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Abstract. This paper presents a brief discussion of the algebraic 

classification of the Weyl conformal tensor on a 4− dimensional manifold with 
metric g of neutral signature ( , , , )+ + − − . The classification is algebraically 
similar to the well-known Petrov classification in the Lorentz case and the 
various algebraic types and corresponding canonical forms are obtained. Further 
details on principal, totally null 2− spaces and null directions similar to those of 
L. Bel in the Lorentz case are described.  

 

Keywords: Weyl tensor classification; neutral signature; algebraic structures. 
  
 

1. Introduction  
 
Let M  be a 4 − dimensional manifold with smooth metric of neutral 

signature ( , , , )+ + − −  and let C  be the Weyl conformal tensor for ( , )M g . The 
idea is to provide an algebraic classification of C  similar to that given by 
Petrov in the Lorentz case. The discussion here is brief and more details will be 
given elsewhere (Hall, 2017). After this work was completed the author was 
                                                 
∗Corresponding author; e-mail: g.hall@abdn.ac.uk 
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informed that ideas similar to some of those reported here have been given in 
(Law, 1991; Law, 2006; Batista, 2013; Ortaggio, 2009) and another approach 
was also presented in (Coley and Hervik, 2010). However, the work here is 
claimed to be simpler, more structured and to go much further and is more 
amenable for purposes of calculation. 
 

2. Algebraic and Geometric Preliminaries 
 
At m M∈  the tangent space to M , mT M , has a basis , , ,x y s t  

satisfying 1x x y y s s t t⋅ = ⋅ = − ⋅ = − ⋅ =  (where ⋅  denotes an inner product with 
respect to ( )g m ) and an associated null basis of (null) vectors , , ,l n L N  at m

given by 2l x t= + , 2n x t= − , 2L y s= +  and 2N y s= −  so that  
1l n L N⋅ = ⋅ =  with all other such inner products zero. The space of all 2 −

forms (bivectors) at m  is denoted by mMΛ  and is a Lie algebra under matrix 
commutation. A bivector F  has matrix rank either 2  or 4  and, if it is 2 , F  is 
called simple. A simple bivector may be written in components as 

ab a b a bF u v v u= −  for , mu v T M∈  and the 2 − dimensional subspace of mT M  
spanned by ,u v  is uniquely determined by F  and called the blade of F . Now, 
with ∗  denoting the usual duality operator and for mE M∈Λ  one has E E∗ ∗ =

and one may define the subalgebras { :  }m mS E M E E
+ ∗

≡ ∈Λ =  and 

{ :  }m mS E M E E
− ∗

≡ ∈Λ = −  of  mMΛ . Each member of mMΛ  may be uniquely 

decomposed into the sum of members of mS
+

 and mS
−

. One also has a metric P  
on mMΛ  given for , mE E M′∈Λ  by ( , ) ab

abP E E E E′ ′=  and this metric has 

signature ( , , , , , )+ + − − − − . It then follows that if mE S
+ +

∈  and mE S
− −

∈ , 

( , ) 0P E E
+ −

=  and P  restricts to a metric of Lorentz signature ( , , )+ − −  on each 

of mS
+

 and mS
−

. This leads to the Lie algebra product m m mM S S
+ −

Λ = ⊕ . Each of 

mS
+

and mS
−

 is Lie-isomorphic to (1,2)o  and, of course, mMΛ  is Lie-

isomorphic to (2,2)o . Particularly important simple members of mS
+

 and mS
−

 

are the totally null bivectors (and they are the only simple members of mS
+

 and  

mS
−

) whose blades are spanned by  an orthogonal pair of null members of mT M . 
Choosing an orientation for mT M  one may then choose a null basis for mT M , 

as above, and then a basis , ,F G H  for mS
+

 where F l n L N= ∧ − ∧ , G l N= ∧  
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and H n L= ∧  (and similarly F l n L N
−

= ∧ + ∧ , G l L
−

= ∧  and H n N
−

= ∧  is a 

basis for mS
−

). In these bases G  and H  are totally null members of mS
+

 and G
−

 

and H
−

 are totally null members of  mS
−

. 
 

3. The Weyl Tensor Classification 
 
The Weyl conformal tensor C  for ( , )M g  satisfies C C∗ ∗=  and may 

be decomposed at any m M∈  into tensors W
+

 and W
−

 as 
 

                     1 1      ( ),      ( )
2 2

C W W W C C W C C
+ − + −

∗ ∗= + ≡ + ≡ −                   (1) 

 

Thus W W
+ +
∗ =  and W W

− −
∗ = − . Next consider the linear map f  on 

bivectors at m  given by : ab ab cd
cdf E C E→  together with maps f

+

 and f
−

 

obtained in a similar way from W
+

 and W
−

. The subspaces mS
+

 and mS
−

 are 

invariant subspaces of f . Now the map : m mf S S
+ + +

→  is a linear map on a 3−
dimensional space of Lorentz signature and may be algebraically classified into 
its Jordan forms (Segre types) and the only types which arise are { }111  

(diagonable over ℝ), { }1zz  (diagonable over ℂ), { }21  (eigenvalues real) and 

{ }3  (with eigenvalue zero from the tracefree condition on W
+

 which follows 

from that on C ). Using the basis for mS
+

 given above it can be shown that the 

above four Jordan types for f
+

 (that is, for W
+

) give the following “canonical” 

forms for ( )W m
+

) 
 

1 2( ) ( ) ( )
2 2

abcd ab cd ab cd ab cd ab cd ab cdW m G H H G F F G G H Hρ ρ+

= + + + ±     (2) 

 

  1( ) ( )
2

abcd ab cd ab cd ab cd ab cdW m G H H G F F G Gρ+

= + + ±                 (3) 

 

( ) ( )abcd ab cd ab cdW m G F F G
+

= +                                 (4) 
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for 𝜌𝜌1,𝜌𝜌2 ∈ ℝ . By analogy with the Petrov classification of ( )C m  in the 

Lorentz case (Petrov, 1969) (and cf (Hall, 2004)), call ( )W m
+

in Eq. (2) type I  if 
the eigenvalues are distinct. If two eigenvalues are equal in Eq. (2) (Segre type 
{ }1(11) ) there are two possibilities; first when the resulting eigen-2-space of 

bivectors has Lorentz signature in mS
+

 ( 2 0ρ =  in Eq. (2)) and this type is called 

1D  and second when this eigen-2-space is Euclidean ( 1 23 0ρ ρ= ≠  in Eq. (2)) 
and this type will be labelled 2D . These are the “degenerate” possibilities for 

type I . Similarly call ( )W m
+

 in Eq. (3) type II  (and call the degenerate case 
when the eigenvalue 1 0ρ =  type N ). For Eq. (4) the type is labelled III . The 
degenerate types are thus 
 

  
1

1
1

( ) ( )
2

3(2 )      (  ; 0)
2 2

abcd ab cd ab cd ab cd

abcd ab cd

W m G H H G F F

P F F type

ρ

ρ ρ

+

+

= + +

= + ≠1D
                     (5) 

 
1 1

1 1

3( ) ( ) ( )
2 2

3                                    (2 )     (  ; 0)
2

abcd ab cd ab cd ab cd ab cd ab cd

abcd ab cd

W m G H H G F F G G H H

P K K type

ρ ρ

ρ ρ

+

+

= + + + +

= − − ≠2D
       (6) 

 

( )      (  )abcd ab cdW m G G type
+

= ± N                               (7) 
 

where K G H≡ +  and 1 1
2 2( )abcd ab cd ab cd ab cdP G H H G F F

+

≡ + − . Finally one adds 

the type O  at m  when ( ) 0W m
+

= . 
 

4. Principal Null Directions and Totally Null 2-Spaces 
 

For ( ) 0W m
+

≠  consider the following relationships for a non-zero 

mk T M∈ , a totally null bivector mE S
+

∈ , a non-zero bivector mP S
+

∈  not 

proportional to E  and satisfying 0ab
abE P = , a 1− form p which is neither 

zero nor parallel to k  and real numbers , , ,α β γ δ  with 0δ ≠ . 
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( ) ,        ( ) b d cd
abcd abcda c abi W k k k k ii W E Eα β

+ +

= =                (8) 
 

    ( )        ( ) b d cd
abcd abcda c a c ab abi W k k k p p k ii W E E Pγ δ

+ +

= + = +      (9) 
 

The vector k  in Eq. (8(i)) is necessarily null and will be said to span a 

repeated principal null direction of  ( )W m
+

 (a repeated pnd) (cf (Bel, 2000; 
Sachs, 1961; Hall, 2004)). The blade of the totally null bivector E  in Eq. (8(ii)) 
will be called a repeated principal totally null 2 − space (a repeated 2 − space) 

of ( )W m
+

 (and E  is an eigenbivector of ( )W m
+

). The vector k  in Eq. (9(i)) can 
be shown to be necessarily null and will be said to span a general principal null 

direction of ( )W m
+

 (a general pnd) [and a set of equivalent conditions on k  are 

(i) that ] [[ ] 0a bc d
b c

e fk W k k k
+

= where square brackets denote the usual skew-
symmetrisation of indices, and (ii) that Eq. (8(i)) is false]. Collectively, repeated 
and general pnds will be referred to simply as pnds. The blade of the bivector 
E  in Eq. (9(ii)) will be called a general principal totally null 2 − space (a 

general 2 − space) of ( )W m
+

. Collectively, repeated and general such 2 − spaces 

are called principal 2 − spaces of ( )W m
+

. Assuming that ( ) 0W m
+

≠  the 
following hold; 
 

Lemma 1 

(i) There exists 0 mk T M≠ ∈  such that 0d
abcdW k

+

=  if and only if 

( )W m
+

 is type N . The vector k  spans a repeated pnd and may be any non-zero 
member of the totally null blade of the bivector G  in Eq. (7) (and only these). 

The bivector G  is the unique totally null member of  mS
+

 (up to a scaling) 
satisfying Eq. (8(ii)) and, in fact, 0β = . 

(ii) There exists 0 mk T M≠ ∈  such that 0b d
abcdW k k

+

=  if and only if 

( )W m
+

 is type N  or III . Again k  spans a repeated pnd and may be any non-
zero member of the totally null blade of the bivector G  in Eq. (7) or Eq. (4) 

(and only these). The bivector G  is the unique totally null member of mS
+

 (up 
to a scaling) satisfying Eq. (8(ii)) and, in fact, 0β = . 
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(iii) There exists 0 mk T M≠ ∈ such that b d
abcd a cW k k k kα

+

=  with  

0 ≠ 𝛼𝛼 ∈ ℝ  if and only if ( )W m
+

 is type II  or 1D . Again k  spans a repeated 
pnd and may be any non-zero member of the totally null blade of the bivector 
G  in Eq. (3) for type II  (and only these), or any member of the totally null 
blades of G  and H  in Eq. (5) for 1D  (and only these). The bivectors G  (for 
type II ) and G  and H  (for type 1D ) are the unique totally null member(s) of 

mS
+

 (up to a scaling) satisfying Eq. (8(ii)) and in all cases 0β α≠ ≠  with the 
same β  arising for both G  and H  and the same α  for the associated pnds in 
type 1D . 

(iv) If there exists 0 mk T M≠ ∈  such that Eq. (9(i)) holds then k  spans 
a general pnd and may be any member of the totally null blade of a bivector 

mE S
+

∈  satisfying Eq. (9(ii)). The non-zero members of the blade of any totally 

null mE S
+

∈  satisfying Eq. (9(ii)) span general pnds. 

Thus finding repeated pnds for ( )W m
+

 amounts to finding its totally null 
eigenbivectors E  as in Eq. (8(ii)). If such an eigenbivector exists either it is 

unique (up to a scaling) and then the type of ( )W m
+

is N , III  ( 0β α= =  in Eq. 
(8)) or II  ( 0β α≠ ≠  in Eq. (8)) or two independent such eigenbivectors exist 
each with the same eigenvalue 0β ≠  ( 0α⇒ ≠ ) in Eq. (8) and then the type is 

1D . The finding of general pnds amounts to solving Eq. (9(ii)) for E  and is 
perhaps more conveniently done by writing this latter equation in the equivalent 

form 0ab cd
abcdW E E

+

=  with E  not an eigenbivector of W
+

. This last equation 
results in a polynomial equation of order at most 4 for real solutions for E . 
Such solutions can then be calculated from Eq. (2)-Eq. (7). The resulting set of 
(real) solutions gives the complete set of solutions for principal 2 − spaces and 

pnds (repeated pnds arising if E  is an eigenbivector of W
+

 and general pnds 
otherwise) and these solutions can be shown to justify the term “repeated”. It is 
remarked here that “real” solutions are required. This is because the general 
solutions of these polynomials sometimes contain complex totally null bivectors 
as solutions. The blades of such solutions actually contain no non-zero real 
vectors (up to scaling) and are thus rejected in this analysis (Hall, 2016). 

Of course, similar results apply to W
−

 and mS
−

 and the repeated and 
general pnds collectively give a description of C . To see this consider the 
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following equations for ( )C m , for a non-zero mk T M∈ , for a 1− form p  at m  
which is neither zero nor parallel to k  and with  𝛼𝛼 ∈ ℝ  . 
 

( )         ( ) b d b d
abcd a c abcd a c a ci C k k k k ii C k k k p p kα= = +             (10) 

 
If 0α ≠  in (i), k  is necessarily null but this is not true if 0α =  (see 

(Hall, 2017; Hall, 2016)). So suppose that Eq. (10(i)) holds with k assumed 
null. Then k  is said to span a repeated principal null direction of ( )C m  (a 
repeated pnd). If Eq. (10(ii)) holds, k  is necessarily null (and orthogonal to p ) 
and is said to span a general principal null direction of ( )C m  (a general pnd). 

[A set of equivalent statements to Eq. (10(ii)) are that ( )a [ ] [ ] 0b c
e a bc d fk C k k k =  

at m  and ( )b  that Eq. (10(i)) is false]. Collectively, repeated and general pnds 
of C  are referred to as pnds of C . Such directions are related to the analogous 

ones for W
+

 and W
−

 by the following lemma. 
 

Lemma 2 
A vector mk T M∈  spans a repeated pnd for C  if and only if it spans a 

repeated pnd for W
+

 and  W
−

. A vector mk T M∈  spans a general pnd for C  if 

and only if it spans a pnd for W
+

 and W
−

 and is general for at least one of them. 
 
It is noted and easily shown that any real eigenbivector of ( )C m  is 

either a member of mS
+

 or mS
−

 or, if not, lies in an eigenspace of C  spanned by 

eigenbivectors in mS
+

 or mS
−

. Thus one may think of all the eigenbivectors of C  

as being in mS
+

 or mS
−

. In fact, a canonical form for ( )C m  is obtained from Eq. 

(1) by simply adding together canonical forms for ( )W m
+

 and ( )W m
−

 and the 

Segre type of ( )C m  is simply the “sum” of the Segre types of ( )W m
+

 and ( )W m
−

 
(with any brackets denoting degeneracies appropriately inserted). To determine 
the pnds of ( )C m  one notes the following easily checked result that the 

intersection of two totally null 2 − spaces each of which lies in mS
+

 or each of 

which lies in mS
−

 is just the trivial subspace whereas the intersection of two 

totally null 2 − spaces one of which lies in mS
+

 and the other in mS
−

 is a null 
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direction at m . Thus when the principal 2 − spaces of ( )W m
+

 and ( )W m
−

 are 

known (and which lie, respectively, in mS
+

 and mS
−

) their intersections give the 
pnds of ( )C m  according to lemma 2. The algebraic type of ( )C m  can then be 

labelled ( , )A B  where A  and B  are the algebraic types for ( )W m
+

and ( )W m
−

. 
For example, ( )C m  has type ( , )N N  if and only if there exists a unique null 
direction spanned by k  at m  satisfying 0d

abcdC k = and which is the 

intersection of the (unique) repeated principal 2 − spaces for ( )W m
+

 and ( )W m
−

 
for type N . A consequence of this classification is the fact that there are finitely 

many (real) principal 2 − spaces for ( )W m
+

 and ( )W m
−

 (possibly none---see an 
earlier remark) and hence finitely many pnds for ( )C m  (possibly none) except 
when the latter's algebraic type is of the form ( , )A O  for certain choices of A  
(e.g., type ( , )N O ) when infinitely many pnds occur. 

Of course, the above classification is pointwise on M . However, one 
can display a topological decomposition of (an open dense subset of) M  into 

open subsets of M  on which the algebraic types of W
+

, W
−

 and C  are constant. 
Also one can demonstrate the local smoothness (in an obvious sense) of the 
canonical forms and decompositions described in section 3 as well as study the 
isotropies arising from the the tetrad changes which preserve the given 

canonical forms for W
+

, W
−

 and C . This will be published elsewhere (Hall, 
2017). In this last respect the study of the subalgebra structure of (2,2)o  given 
in (Ghanam and Thompson, 2001) and, in a more accessible form for the 
present purposes in (Wang and Hall, 2013), is useful. 
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OBSERVAȚII ASUPRA CLASIFICĂRII 
 TENSORULUI CONFORM WEYL ÎN VARIETĂȚI 4-DIMENSIONALE 

 DE SIGNATURĂ NEUTRĂ 
 

(Rezumat) 
 

Această lucrare prezintă o scurtă discuție asupra clasificării algebrice a 
tensorului conform Weyl pe o varietate 4-dimensională cu metrică g de signatură neutră 
(+,+,-,-). Din punct de vedere algebric, clasificarea este similară cu binecunoscuta 
clasificare Petrov în cazul Lorentz. Sunt obținute diferite tipuri algebrice și formele 
canonice corespunzătoare. Sunt descrise mai multe detalii ale 2-spațiilor principale total 
nule și ale direcțiilor nule, similare celor ale lui L. Bel din cazul Lorentz.  
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Abstract. The purpose of this paper is to prove a general fixed point 

theorem for two pairs of mappings in G - metric spaces, generalizing the results 
from (Popa and Patriciu, 2014) and unifying the results from (Giniswamy and 
Maheshwari, 2014). Also, a new result for a sequence of mappings is obtained. 
In the last part of this paper as applications, some fixed point results for 
mappings satisfying contractive conditions of integral type, for almost 
contractive mappings, for φ  - contractive mappings and ),( ψφ  - contractive 
mappings in G - metric spaces, are obtained. 

 

Keywords: fixed point; almost altering distance; common limit range 
property; implicit relation; G - metric space. 

 
 

 
1. Introduction 

 
Let ),( dX  be a metric space and TS ,  be two mappings of X . In 

1996, Jungck (Jungck, 1996) defined S  and T  to be compatible if 
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0=),(lim nn
n

STxTSxd
∞→

 

 
whenever }{ nx  is a sequence in X  such that 

 
,=lim=lim tTxSx n

n
n

n ∞→∞→
 

 
for some Xt ∈ . 

This concept has been frequently used to prove the existence theorems 
in fixed point theory. 

Let gf ,  be self mappings of a nonempty set X . A point Xx∈  is a 
coincidence point of f  and g  if gxfxw ==  and w  is said to be a point of 
coincidence of f  and g . The set of all coincidence points of f  and g  is 
denoted by ),( gfC . 

In 1994, Pant (Pant, 1994) introduced the notion of pointwise R  - 
weakly commuting mapping, which is equivalent to commutativity at 
coincidence points. 

In 1996, Jungck (Jungck, 1996) introduced the notion of weakly 
compatible mappings. 

Definition 1.1 (Jungck, 1996) Let X  be a nonempty set and gf ,  be 
self mappings of X . f  and g  are weakly compatible if gfufgu =  for all 

),( gfCu∈ .   
Hence, f  and g  are weakly compatible if and only if f  and g  are 

pointwise R  - weakly commuting. 
The study of common fixed points for noncompatible mappings is also 

interesting, the work of this regard beeing initiated by Pant in (Pant, 1998; 
1999). 

Aamri and El - Moutawakil (2002) introduced a generalization of 
noncompatible mappings. 

Definition 1.2 (Aamri and El - Moutawakil, 2002)  Let S  and T  be 
two self mappings of a metric space ( )dX , . We say that S  and T  satisfy 
property ( )EA  if there exists a sequence }{ nx  in X  such that  

,=lim=lim tSxTx n
n

n
n ∞→∞→

 

for some Xt ∈ .   
Remark 1.1  It is clear that two self mappings S  and T  of a metric 

space ( )dX ,  will be noncompatible if there exists }{ nx  in X  such that 
tTxSx nnnn =lim=lim ∞→∞→ , for some Xt ∈  but ),(lim nnn TSxSTxd∞→  is 

non zero or non existent.   
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Therefore, two noncompatible self mappings of a metric space ( )dX ,  
satisfy property ( )EA . 

It is known from (Pathak et al., 2010) that the notions of weakly 
compatible mappings and mappings satisfying property ( )EA  are independent. 

There exists a vast literature concerning the study of fixed points for 
pairs of mappings satisfying property ( )EA . 

In 2005, Liu et al. (Liu et al., 2005) defined the notion of common 
property ( )EA . 

Definition 1.3 (Liu et al., 2005) Two pairs ( )SA,  and ( )TB,  of self 
mappings of a metric space ( )dX ,  are said to satisfy common property ( )EA  if 
there exist two sequences }{ nx  and }{ ny  in X  such that 

,=lim=lim=lim=lim tTyBySxAx n
n

n
n

n
n

n
n ∞→∞→∞→∞→

 

for some Xt ∈ .   
In 2011, Sintunavarat and Kumam (Sintunavarat and Kumam, 2011) 

introduced the notion of common limit range property. 
Definition 1.4 (Sintunavarat and Kumam, 2011) A pair ( )SA,  of self 

mappings of a metric space ( )dX ,  is said to satisfy the common limit range 
property with respect to S , denoted )(SCLR  if there exists a sequence }{ nx  in 
X  such that 

,=lim=lim tSxAx n
n

n
n ∞→∞→

 

for some )(XSt∈ .   
Thus we can infer that a pair ( )SA,  satisfying the property ( )EA  along 

with the closedness of the subspace ( )XS  always has the )(SCLR  - property 
with respect to S  (see Examples 2.16, 2.17 (Imdad et al., 2012)). 

Recently, Imdad et al. (2013) extended the notion of common limit 
range property to the pairs of self mappings. 

Definition 1.5 (Imdad et al., 2013) Two pairs ( )SA,  and ( )TB,  of self 
mappings of a metric space ( )dX ,  are said to satisfy common limit range 
property with respect to S  and T , denoted ),( TSCLR  if there exist two 
sequences }{ nx  and }{ ny  in X  such that 

,=lim=lim=lim=lim tTyBySxAx n
n

n
n

n
n

n
n ∞→∞→∞→∞→

 

where ( )XTXSt ∩∈ )( .   
Some fixed point results for pairs of mappings with ),( TSCLR  property are 

obtained in (Imdad and Chauhan, 2013; Karapinar et al., 2013) and in other papers. 
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2. Preliminaries 
 

In (Dhage, 1992; 2000), Dhage introduced a new class of generalized 
metric space, named D  - metric spaces. Mustafa and Sims (2003; 2006), proved 
that most of the claims concerning the fundamental topological structures on D  
- metric spaces are incorrect and introduced appropriate notion of generalized 
metric space, named G  - metric space. In fact, Mustafa, Sims and other authors 
studied many fixed point results for self mappings under certain conditions in 
(Mustafa et al., 2008; Mustafa and Sims, 2009; Shatanawi, 2010), and in other 
papers. 

Definition 2.1 (Mustafa and Sims, 2006) Let X  be a nonempty set and 

+→ R3: XG  be a function satisfying the following properties: 
0=),,(:)( 1 zyxGG  for zyx == , 
),,(<0:)( 2 yxxGG  for all Xyx ∈,  with yx ≠ , 

),,(),,(:)( 3 zyxGyyxGG ≤  for all Xzyx ∈,,  with yz ≠ , 
...=),,(=),,(=),,(:)( 4 yxzGxzyGzyxGG  (symmetry in all three variables), 

),,(),,(),,(:)( 5 zyaGaaxGzyxGG +≤  for all Xazyx ∈,,,  (triangle inequality). 
The function G  is called a G  - metric on X  and ),( GX  is called a G  

- metric space.   
Note that if 0=),,( zyxG , then zyx == . 
Remark 2.1  Let ),( GX  be a G  - metric space. If zy = , then 
),,( yyxG  is a quasi - metric on X . Hence, ( )QX , , where ( ) ( )yyxGyxQ ,,=, , 

is a quasi - metric space and since every metric space is a particular case of 
quasi - metric space it follows that the notion of G  - metric space is a 
generalization of a metric space.   

Definition 2.2 (Mustafa and Sims, 2006) Let ),( GX  be a G  - metric 
space. A sequence }{ nx  in X  is said to be: 
a) G  - convergent if for 0>ε , there exist Xx∈  and N∈k  such that for all 

knmnm ≥∈ ,,, N , ε<),,( mn xxxG . 
b) G  - Cauchy if for 0>ε , there exists N∈k  such that for all N∈pnm ,, , 

kpnm ≥,, , ε<),,( pmn xxxG , that is 0),,( →pmn xxxG  as ∞→pmn ,, . 
c) A G  - metric space is said to be G  - complete if every G  - Cauchy sequence 
in X  is G  - convergent. 

Lemma 2.1 (Mustafa and Sims, 2006) Let ),( GX  be a G  - metric 
space. Then, the following conditions are equivalent: 
1) }{ nx  is G  - convergent to x ; 
2) 0),,( →xxxG nn  as ∞→n ; 
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3) 0),,( →xxxG n  as ∞→n ; 
4) 0),,( →xxxG mn  as ∞→mn, .   

Lemma 2.2 (Mustafa and Sims, 2006) If ),( GX  is a G  - metric space, 
then the following conditions are equivalent: 
1) }{ nx  is G  - Cauchy; 
2) For 0>ε , there exists N∈k  such that ε<),,( mmn xxxG  for all N∈nm, , 

knm ≥, .   
Lemma 2.3 (Mustafa and Sims, 2006) Let ),( GX  be a G  - metric 

space. Then, the function ),,( zyxG  is jointly continuous in all three of its 
variables.   

Definition 2.3 (Mustafa and Sims, 2006) A G  - metric on a set X  is 
said to be symmetric if ( ) ( )xxyGyyxG ,,=,,  for all Xyx ∈, . Then, ( )GX ,  is 
said to be symmetric G  - metric space.   

Quite recently (Popa and Patriciu, 2014), a general fixed point theorem 
for a pair of mappings satisfying )(SCLR  - property in G  - metric spaces is 
proved. 

Definition 2.4 (Khan et al., 1984) An altering distance is a function 
)0,)[0,: ∞→∞φ  satisfying: 

( ) φφ :1  is increasing and continuous; 
( ) ( ) 0=:2 tφφ  if and only if 0=t .  

Fixed point theorems involving altering distances have been studied in 
(Popa and Mocanu, 2007; Sastri and Babu, 1998; 1999) and in other papers. 

Definition 2.5 (Popa and Patriciu, 2014) A function )0,)[0,: ∞→∞ψ  is 
an almost altering distance if: 
( ) ψψ :1  is continuous; 
( ) ( ) 0=:2 tψψ  if and only if 0=t .   

Remark 2.1  Every altering distance is an almost altering distance, but 
the converse is not true.   

Example 2.1   ( )






∞∈

∈

).(1, ,1
0,1][ ,

= t
t

tt
tψ    

 
3. Implicit Relations in G  - Metric Spaces 

 
Several fixed point theorems and common fixed point theorems have 

been unified considering a general condition by an implicit function in (Popa, 
1997; 1999) and in other papers. 
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Recently, the method is used in the study of fixed points in metric 
spaces, symmetric spaces, quasi - metric spaces, b  - metric spaces, ultra - 
metric spaces, reflexive spaces, compact metric spaces, paracompact metric 
spaces, in two and three metric spaces, for single - valued mappings, hybrid 
pairs of mappings and set - valued mappings. The method is used in the study of 
fixed points for mappings satisfying a contractive/extensive condition of 
integral type, in fuzzy metric spaces, probabilistic metric spaces, intuitionistic 
metric spaces, partial metric spaces and G  - metric spaces. 

The study of fixed points for mappings satisfying implicit relations in G  - 
metric spaces is initiated in (Popa and Patriciu, 2012; 2013) and in other papers. 

With this method the proofs of some fixed point theorems are more 
simple. Also, the method allows the study of local and global properties of fixed 
point structures. 

The study of fixed points for pairs of self mappings with common limit 
range property in metric spaces satisfying implicit relations is initiated in 
(Imdad and Chauhan, 2013). 

The study of fixed points for a pair of self mappings with common limit 
range property in G  - metric spaces is initiated in (Popa and Patriciu, 2014). 

In 2008, Ali and Imdad (Ali and Imdad, 2008) introduced a new class 
of implicit relations.  

Definition 3.1 (Ali and Imdad, 2008) Let GF  be the family of lower  

semi - continuous functions RR →+
6:F  satisfying the following conditions: 

:)( 1F  0>),0,0,,0,( tttF , for all 0>t ; 
:)( 2F  0>,0),,0,0,( tttF , for all 0>t ; 
:)( 3F  0>),,0,0,,( ttttF , for all 0>t .   

Example 3.1 65432161 =),...,( etdtctbtattttF −−−−− , where 
0,,,, ≥edcba  and 1<edcba ++++ .   

Example 3.2 






 +

−
2

,,,max=),...,( 65
432161

tt
tttktttF , where 

0,1)[∈k .   
Example 3.3 { }632161 ,...,,max=),...,( tttktttF − , where 0,1)[∈k .   

Example 3.4 






 ++

−
2

,
2

,max=),...,( 6543
2161

tttt
tktttF , where 

0,1)[∈k .    
Example 3.5 { } { }652432161 ,,max,max=),...,( tttcttbattttF −−− , 

where 0,, ≥cba  and 1<cba ++ .   
Example 3.6  { } ( )65432161 )(1,,max=),...,( btatttttttF +−−− αα , 

where ,)0,1(∈α  0, ≥ba  and 1<ba + .   
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Example 3.7  ( ) },{min=),...,( 65432161 ttcttbattttF −+−− , where 
0>,, cba  and 1<cba ++ .   

Example 3.8  ( )
43

65
2161 1

=),...,(
tt

ttb
attttF

++
+

−− , where 0, ≥ba  and 

1<2ba + .   
Example 3.9  { }65432161 ,,,max=),...,( btatctctcttttF +− , where 
,)0,1(∈c  0, ≥ba  and 1<cba ++ .   
Quite recently, the following theorem is proved in (Popa & Patriciu, 

2014). 
Theorem 3.1 (Popa & Patriciu, 2014) Let T  and S  be self mappings of 

a G  - metric space ( )GX ,  such that 

0,<))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

SySxTxGTySxSxGSyTyTyG
SxTxTxGSySxSxGTyTxTxGF

ψψψ
ψψψ

 

for all Xyx ∈, , where F  satisfies properties ( ) ( )31 , FF  and ψ  is an almost 
altering distance. If T  and S  satisfy )(SCLR  - property, then ( ) ∅≠STC , . 
Moreover, if T  and S  are weakly compatible, then T  and S  have a unique 
common fixed point.   

The purpose of this paper is to prove a general fixed point theorem for 
two pairs of mappings satisfying common limit range property in G  - metric 
spaces, generalizing the results from (Popa and Patriciu, 2014) and unifying the 
results from (Giniswamy and Maheshwari, 2014). Also, a new result for a 
sequence of mappings is obtained. 

In the last part of this paper, as applications, some fixed point results for 
mappings satisfying contractive conditions of integral type, for almost 
contractive mappings, for ϕ  - contractive mappings and ( )ψϕ,  - contractive 
mappings in G  - metric spaces are obtained. 
 

4. Main Results 
 

Lemma 4.1 (Abbas and Rhoades, 2009) Let gf ,  be two weakly 
compatible self mappings of a nonempty set X . If f  and g  have a unique 
point of coincidence gxfxw ==  for some Xx∈ , then w  is the unique 
common fixed point of f  and g .   

Theorem 4.1  Let SBA ,,  and T  be self mappings of a G  - metric 
space ),( GX  satisfying inequality 

 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TyTyAxGByBySxGByByTyG
AxSxSxGTyTySxGByByAxGF

ψψψ
ψψψ

        (4.1) 
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for all Xyx ∈, , F  satisfies property )( 3F  and ψ  is an almost altering 
distance. 

If there exist Xvu ∈,  such that SuAu =  and TvBv = , then there 
exists Xt ∈  such that t  is the unique point of coincidence of A  and S , as well 
t  is the unique point of coincidence of B  and T .   

Proof. First we prove that TvSu = . Suppose that TvSu ≠ . By (4.1) we 
obtain 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TvTvAuGBvBvSuGBvBvTvG
AuSuSuGTvTvSuGBvBvAuGF

ψψψ
ψψψ

 
 

0,))),,((,)),,((,0,0,)),,((,)),,((( ≤TvTvSuGTvTvSuGTvTvSuGTvTvSuGF ψψψψ
a contradiction of )( 3F .  
  Hence, TvSu = , which implies tTvBvAuSu ==== . Suppose that 
there exists SwAwz ==  with tz ≠ . Then, by (4.1) we obtain 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TvTvAwGBvBvSwGBvBvTvG
AwSwSwGTvTvSwGBvBvAwGF

ψψψ
ψψψ

 
 

0,))),,((,)),,((,0,0,)),,((,)),,((( ≤TvTvSwGTvTvSwGTvTvSwGTvTvSwGF ψψψψ
a contradiction of )( 3F .  
  Hence, tSuAuBvTvAwSwz =======  and t  is the unique point 
of coincidence of A  and S . Similarly, t  is the unique point of coincidence of 
B  and T .  

Theorem 4.2  Let SBA ,,  and T  be self mappings of a G  - metric 
space ),( GX  satisfying inequality (4.1) for all Xyx ∈, , GF F∈  and ψ  is an 
almost altering distance. If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 
i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Proof. Since ),( SA  and ),( TB  satisfy ),( TSCLR  - property, there 
exists two sequences }{ nx  and }{ ny  in X  such that  

zTyBySxAx nnnnnnnn =lim=lim=lim=lim ∞→∞→∞→∞→ , 
where )()( XTXSz ∩∈ . 

Since )(XTz∈ , there exists Xu∈  such that Tuz = . 
By (4.1) we have 

0.))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TuTuAxGBuBuSxGBuBuTuG
AxSxSxGTuTuSxGBuBuAxGF

nn

nnnnn

ψψψ
ψψψ
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Letting n  tends to infinity we obtain 
0,,0))),,((,)),,((,0,0,)),,((( ≤BuBuzGBuBuzGBuBuzGF ψψψ  

a contradiction of )( 2F  if 0>)),,(( BuBuzGψ . Hence, 0=)),,(( BuBuzGψ , 
which implies TuBuz ==  and ∅≠),( TBC . 

Since )(XSz∈ , there exists Xv∈  such that Svz = . By (4.1) we 
obtain 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TuTuAvGBuBuSvGBuBuTuG
AvSvSvGTuTuSvGBuBuAvGF

ψψψ
ψψψ

 
 

0,))),,((,0,0,)),,((,0,)),,((( ≤zzAvGzzAvGzzAvGF ψψψ  
 
a contradiction of )( 1F  if 0>)),,(( zzAvGψ . Hence, 0=)),,(( zzAvGψ , which 
implies SvAvz ==  and ∅≠),( SAC . 

By Theorem 4.1, z  is the unique point of coincidence of ),( SA  and 
),( TB . 

Moreover, if ),( SA  and ),( TB  are weakly compatible, by Lemma 4.1, 
z  is the unique fixed point of SBA ,,  and T .  

If tt =)(ψ , then by Theorem 4.2 we obtain 
Theorem 4.3  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  satisfying the inequality 
 

0,)),,(),,,(),,,(
),,,(),,,(),,,((
≤TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGByByAxGF
                 (4.2) 

 
for all Xyx ∈, , GF F∈ . 

If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 
i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   
  Example 4.1 Let ]11,0[=X  and let +→R3: XG  be the G – metric 
defined as follows 
 

|}||,||,max{|),,( zxzyyxzyxG −−−=  
 
for all Xzyx ∈,, . Then ),( GX  is a G – metric space. 
 Define the self mappings SBA ,,  and T  
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



∈
∪∈

=
],5,2(,5

]11,5(]2,0[,2
x
x

Ax  













∈
+
∈
∈

=

],11,5[,
8

13
)5,2(,6
]2,0[,2

xx
x
x

Sx  





∈
∪∈

=
],5,2(,4

]11,5(]2,0[,2
x
x

Bx  








∈−
∈
∈

=
].11,5(,3

]5,2(,8
]2,0[,2

xx
x
x

Tx  

 Then  

]8,2[},6{
4

17,2},4,2{},5,2{ =∪




=== TXSXBXAX . 

  Let 
n

xn
12 −=  and 2

12
n

yn −=  be. Then  

)()(2limlimlimlim XTXSTyBySxAx nnnn ∩∈====  
 and ( )SA,  and ( )TB,  satisfies −),( TSCLR property. 

 On the other hand, 2=z  is the unique point of coincidence of  ( )SA,  
and ( )TB, . 
 SxAx =  for ]2,0[∈x , TxBx =  for ]2,0[∈x , 2== SAxASx . 
Similarly, 2==TBxBTx , hence ( )SA,  and ( )TB,  are weakly compatible. 
  If 

)},,,(),,,(),,,(
),,,(),,,(max{),(

TyTyAxGByBySxGByByTyG
AxSxSxGTyTySxGyxM =

 

then by a routine calculation we obtain 
),(),,( yxkMByByAxG ≤ , 

with 




∈ 1,

4
3k . 

  Thus, by Example 1 and Theorem 4.2, SBA ,,  and T  have a unique 
common fixed point which is 2=x . 

Similarly as in Theorem 4.2 we obtain 
Theorem 4.4  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  satisfying inequality 
 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TyAxAxGBySxSxGByTyTyG
AxAxSxGTySxSxGByAxAxGF

ψψψ
ψψψ

          
(4.3) 

 

for all Xyx ∈, , GF F∈  and ψ  is an almost altering distance. 
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If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 
i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if  ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Theorem 4.5  Let ),( GX  be a G  - metric space and SBA ,,  and T  
be self mappings of X  satisfying the inequality 

),,,(),,(),,(
),,(),,(),,(
TyTyAxeGByBySxdGByByTycG

AxSxSxbGTyTySxaGByByAxG
+++

++≤

                
(4.4) 

for all Xyx ∈, , 0,,,, ≥edcba  and 1<edcba ++++ . 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Corollary 4.1 (Theorem 2.5 (Giniswamy and Maheshwari, 2014)) Let 
),( GX  be a G  - metric space and SBA ,,  and T  be self mappings of X  such 

that: 
1) ),( SA  and ),( TB  satisfy ),( TSCLR  - property; 

2) 
)],,,(),,([),,(

),,(),,(),,(
BzBySxGTzTyAxGtBzBzTyrG

AxSxSxqGTyTySxpGBzByAxG
+++

++≤

              
(4.5) 

for all Xzyx ∈,, , where 0,,, ≥trqp  and 1<2trqp +++ . 
Then ),( SA  and ),( TB  have a unique point of coincidence in X . 
Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  

and T  have a unique common fixed point.   
Proof. Let zy = , then by (4.5) we obtain a particular case of (4.4) and 

the proof follows from Theorem 4.5.  
Theorem 4.6  Let ),( GX  be a G  - metric space and SBA ,,  and T  be 

self mappings of X  satisfying the inequality: 
 

},
2

),,(),,(),,,(

),,,(),,,({max),,(
TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGkByByAxG
+

≤

           

(4.6) 

for all Xyx ∈,  and 0,1)[∈k . 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  
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Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Proof. The proof follows from Theorem 4.3 and Example 3.2.  
Corollary 4.2 (Theorem 2.6 (Giniswamy and Maheshwari, 2014)) Let 

),( GX  be a G  - metric space and SBA ,,  and T  be self mappings of X  such 
that: 
1) ),( SA  and ),( TB  satisfy ),( TSCLR  - property; 
2) ),,(),,( zyxhuBzByAxG ≤ , where )0,1(∈h , Xzyx ∈,,  and  

}.
2

),,(),,(,),,(,),,(,),,({),,( BzBySxGTzTyAxGByByTyGTyTySxGSxSxAxGzyxu +
∈  

  Then ),( SA  and ),( TB  have a unique point of coincidence in X . 
Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  

and T  have a unique common fixed point.   
Proof. Let zy = , then by (2) we obtain 

},
2

),,(),,(,),,(

,),,(,),,({max),,(
TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGhByByAxG
+

≤
 

which is inequality (4.6) and the proof of Corollary 4.2 follows from Theorem 
4.6.  

For a function XXf →:  we denote 

}.=:{=)( fxxXxfFix ∈  

 Theorem 4.7  Let SBA ,,  and T  be self mappings of a G  - metric 
space ),( GX . If the inequality (4.1) holds for all Xyx ∈, , GF F∈  and ψ  is 
an almost altering distance, then 

[ ] [ ] .)()()(=)()()( BFixTFixSFixAFixTFixSFix ∩∩∩∩  
Proof. Let [ ] )()()( AFixTFixSFixx ∩∩∈ . Then by (4.1) we have 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

≤TxTxAxGBxBxSxGBxBxTxG
AxSxSxGTxTxSxGBxBxAxGF

ψψψ
ψψψ

 

0,,0))),,((,)),,((,0,0,)),,((( ≤BxBxxGBxBxxGBxBxxGF ψψψ  
a contradiction of )( 2F  if 0>)),,(( BxBxxGψ . Hence, 0=)),,(( BxBxxGψ  
which implies Bxx =  and )(BFixx∈ . 

Hence 
[ ] [ ] .)()()()()()( BFixTFixSFixAFixTFixSFix ∩∩⊂∩∩  

Similarly, by (4.1) and )( 1F  we obtain 
[ ] [ ] .)()()()()()( AFixTFixSFixBFixTFixSFix ∩∩⊂∩∩  

Theorems 4.2 and 4.7 imply the following one. 
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Theorem 4.8  Let TS ,  and ∗∈NiiA }{  be self mappings of a G  - metric 

space ),( GX  satisfying the inequality 

0,))),,((,)),,((,)),,((
,)),,((,)),,((,)),,(((

1111

11

≤++++

++

TyTyxAGyAyASxGyAyATyG
xASxSxGTyTySxGyAyAxAGF

iiiii

iiii

ψψψ
ψψψ

 
(4.7) 

for all Xyx ∈, , GF F∈ , ψ  is an almost altering distance and ∗∈Ni . 
If ),( 1 SA  and ),( 2 TA  satisfy ),( TSCLR  - property and ),(,),( 21 TASA  

are weakly compatible, then TS ,  and ∗∈NiiA }{  have a unique common fixed 

point.   
If ( ) tt =ψ , from Theorem 4.8 we obtain 
Theorem 4.9  Let TS ,  and ∗∈NiiA }{  be self mappings of a G  - metric 

space ),( GX  satisfying the inequality 

0,)),,(),,,(),,,(
),,,(),,,(),,,((

1111

11

≤++++

++

TyTyxAGyAyASxGyAyATyG
xASxSxGTyTySxGyAyAxAGF

iiiii

iiii           (4.8) 

for all Xyx ∈, , GF F∈  and ∗∈Ni . 
If ),( 1 SA  and ),( 2 TA satisfy ),( TSCLR  - property and ),(,),( 21 TASA  

are weakly compatible, then TS ,  and ∗∈NiiA }{  have a unique common fixed 

point.   
 Remark 4.1  We obtain similar results from Theorem 4.4.   
  

5. Applications 
 

5.1. Fixed Points for Mappings Satisfying Contractive 
 Conditions of Integral Type 

 
 In (Branciari, 2002), Branciari established the following theorem which 
opened the way to the study of fixed points for mappings satisfying contractive 
conditions of integral type. 
  Theorem 5.1 (Branciari, 2002) Let ),( dX  be a complete metric space, 

)1,0(∈c  and XXf →:  such that for all Xyx ∈,  

∫∫ ≤
),(

0

),(

0
)()(

yxdfyfxd
dtthcdtth , 

whenever ),0[),0[: ∞→∞h  is a Lebesgue measurable mapping which is 
summable (i.e., with finite integral) on each compact subset of ),0[ ∞  such that 
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0)(
0

>∫
ε

dtth  for each 0>ε . Then, f has an unique fixed point Xz∈  such that 

for all Xx∈ , xfz n
n ∞→

= lim . 

Theorem 5.1 has been extended to a pair of compatible mappings in 
(Kumar et al., 2007). 
  Theorem 5.2 (Kumar et al., 2007) Let gf ,  be compatible mappings of 
a complete metric space with g  – continuous satisfying the following 
conditions: 
1) )()( XgXf ⊂ , 

2) ∫≤∫
),(

0

),(

0
)()(

yxdgyfxd
dtthcdtth , 

for some )1,0(∈c , whenever Xyx ∈,  and )(th  as in Theorem 5.1. 
 Then, f  and g  have a unique common fixed point.  
  Some fixed point results for mappings satisfying contractive conditions 
of integral type are proved in (Popa and Mocanu, 2007; 2009) and in other 
papers. 

Lemma 5.1 Let )0,)[0,: ∞→∞h  as in Theorem 5.1. Then 

dxxht t )(=)( 0∫ψ  is an almost altering distance.   
Proof. The proof follows from Lemma 2.5 (Popa and Mocanu, 2009).  
Theorem 5.3  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 

0,))(,)(,)(

,)(,)(,)((
),,(

0
),,(

0
),,(

0

),,(
0

),,(
0

),,(
0

≤∫∫∫

∫∫∫
dtthdtthdtth

dtthdtthdtthF
TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGByByAxG

           

(5.1) 

for all Xyx ∈, , where GF F∈  and )(th  as in Theorem 5.1. 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Proof. By Lemma 5.1, dxxht t )(=)( 0∫ψ  is an almost altering distance. 
By (5.1) we have 

0.))),,(()),,,(()),,,((
)),,,(()),,,(()),,,(((
≤TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGByByAxGF
ψψψ

ψψψ
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Hence the conditions of Theorem 4.2 are satisfied and the conclusions 
of Theorem 5.3 follows.  

Similarly, from Theorem 4.4 we obtain 
Theorem 5.4  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 

0,))(,)(,)(

,)(,)(,)((
),,(

0
),,(

0
),,(

0

),,(
0

),,(
0

),,(
0

≤∫∫∫

∫∫∫
dtthdtthdtth

dtthdtthdtthF
TyAxAxGBySxSxGByTyTyG

AxSxSxGBySxSxGByAxAxG

             (5.2) 

for all Xyx ∈, , where GF F∈  and )(th  as in Theorem 5.1. 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

From Theorem 5.4 and Example 3.2 we obtain 
Theorem 5.5  Let ),( GX  be a G  - metric space and SBA ,,  and T  be 

self mappings of X  satisfying 

},
2

)()(
,)(

,)(,)({max)(
),,(

0
),,(

0),,(
0

),,(
0

),,(
0

),,(
0

dtthdtth
dtth

dtthdtthkdtth
TyAxAxGBySxSxG

ByTyTyG

AxSxSxGTySxSxGByAxAxG

∫∫
∫

∫∫∫
+

≤

 

for all Xyx ∈, , 0,1)[∈k  and )(th  as in Theorem 5.1. 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Remark 5.1  If 1=)(th , from Theorem 5.5 we obtain Theorem 4.6. 
From Theorems 5.3, 5.4 and Examples 3.1 – 3.9 we obtain new 

particular results.   
 

5.2. Fixed Points for Almost Contractive  
Mappings in G  - Metric Spaces 

 
Definition 5.1 Let ),( dX  be a metric space. A mapping XXT →:  is 

called weak contractive (Berinde, 2003; 2004) or almost contractive (Berinde, 
2010) if there exist )0,1(∈δ  and some 0≥L  such that 

.,),(),(),( XyxallforTxyLdyxdTyTxd ∈+δ≤  
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The following theorem is proved in (Berinde, 2010). 
Theorem 5.6 (Berinde, 2010) Let ),( dX  be a metric space and 

XXST →:,  be mappings for which there exists )0,1(∈a  and some 0≥L  
such that 

,),(),(),( TxSyLdSySxadTyTxd +≤  
for all Xyx ∈, . 

If )()( XSXT ⊂  and )(XS  is a complete subspace of X , then T  and 
S  have a unique point of coincidence. Moreover, if T  and S  are weakly 
compatible, then T  and S  have a unique common fixed point.   

A similar result is obtained if 
},),(,),(,),(,),({min),(),( SyTxdTySxdTySydTxSxdLSySxadTyTxd +≤  

where )0,1(∈a  and 0≥L . 
In (Babu et el., 2008), a similar result is obtained if 

},),(,),(,),(,),({min),(),( SyTxdTySxdTySydTxSxdLyxmTyTxd +δ≤  
where )0,1(∈δ , 0≥L  and 

}.
2

),(),(,
2

),(),(,),({max=),( SyTxdTySxdSyTydSxTxdSySxdyxm ++  

The following functions RR →+
6:F  satisfy conditions (F1), (F2) and 

(F3). 

 Example 5.1   −






 ++

−
2

,
2

,max=),...,( 6543
2161

tttt
ttttF δ

 
},,,min{ 6543 ttttL− , where )0,1(∈δ  and 0≥L .  

 Example 5.2  { }65432161 ,,,min=),...,( ttttLattttF −− , where 
)0,1(∈a  and 0≥L .    

 Example 5.3 −






 +

−
2

,,,max=),...,( 65
432161

tt
tttktttF

 
},,,min{ 6543 ttttL− , where )0,1(∈k  and 0≥L .   

 Example 5.4  −− },,,,max{=),...,( 65432161 tttttktttF  
},,,min{ 6543 ttttL− , where )0,1(∈k  and 0≥L .   

 Example 5.5  −






 ++

−
2

,
2

,max=),...,( 6543
2161

tttt
tktttF

 
},,,min{ 655443 ttttttL , where )0,1(∈k  and 0≥L .   

Example 5.6  −− },,,max{=),...,( 655432161 ttttttktttF  
},,,min{ 6543 ttttL , where )0,1(∈k  and 0≥L .   

 Example 5.7  { }−++− )(,)(max=),...,( 6543161 ttkttktttF  
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},,,min{ 6543 ttttL , where 





∈

2
10,k  and 0≥L .   

Example 5.8  −






 +α

αα−
2

)(
,,,max=),...,( 65

432161
tt

ttttttF
 

},,,min{ 6543 ttttL , where )0,1(∈α  and 0≥L .   
By Theorem 4.2 and Example 5.1 we obtain 
Theorem 5.7  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 
 

},
2

)),,(()),,((,
2

)),,(()),,((
)),,,(({max)),,((

TyTyAxGByBySxGByByTyGAxSxSxG
TyTySxGByByAxG
ψψψψ

ψδψ
++

≤
 

 
where )0,1(∈δ , 0≥L , for all Xyx ∈,  and ψ  is an almost altering distance. 

If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Theorem 5.8  Let SBA ,,  and T  be self mappings of a G  - metric 
space ),( GX  such that 

 

},)(,)(,)(,)({min

}
2

)()(
,

2

)()(

,)({max)(

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

),,(
0

dtthdtthdtthdtthL

dtthdtthdtthdtth

dtthdtth

TyTyAxGByBySxGByByTyGAxSxSxG

TyTyAxGByBySxGByByTyGAxSxSxG

TyTySxGByByAxG

∫∫∫∫

∫∫∫∫

∫∫

+
++

≤ δ

 

 
where )0,1(∈δ  and 0≥L , for all Xyx ∈,  and )(th  as in Theorem 5.1. 

If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Remark 5.2  Similar results are obtained by Examples 5.2 – 5.8.   
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5.3. Fixed Points for Mappings Satisfying ϕ  - Contractive 
 Conditions in G  - Metric Spaces 

 
As in (Matkowski, 1997), let φ  be the set of all real nondecreasing 

continuous functions )0,)[0,: ∞→∞ϕ  with 0=)(lim tn
n ϕ∞→ . 

If φϕ∈ , then 
1) tt <)(ϕ  for all )(0,∞∈t , 
2) 0=)0(ϕ . 

The following functions RR →+
6:F  satisfy conditions (F1), (F2) and (F3). 

 Example 5.9  }),,,,(max{=),...,( 65432161 ttttttttF ϕ− .   

Example 5.10  














 +

ϕ−
2

,,,max=),...,( 65
432161

tt
ttttttF .   

Example 5.11  














 ++

ϕ−
2

,
2

,max=),...,( 6543
2161

tttt
ttttF .   

Example 5.12  }),,,,(max{=),...,( 656453432161 ttttttttttttF ϕ−    
Example 5.13  )(=),...,( 65432161 etdtctbtattttF ++++ϕ− , where 

0,,,, ≥edcba  and 1<edcba ++++ .   

Example 5.14  














++
+ϕ−

43

65
2161 1

=),...,(
tt

tt
battttF , where 

0, ≥ba  and 1<ba + .   
Example 5.15 

,
2

,
2

max},{max=),...,( 6543
432161 















 ++

++−
ttttcttbattttF ϕ  where 

0,, ≥cba  and 1<cba ++ .   
Example 5.16  
















 ++++

+−
3

,
3

2
,

3
2

max=),...,( 6536454
2161

ttttttt
battttF ϕ , where 0, ≥ba  

and 1<ba + .   
By Theorem 4.2 and Example 5.9 we obtain 
Theorem 5.9  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 
 

,)})),,(()),,,(()),,,((
)),,,(()),,,(({max()),,((

TyTyAxGByBySxGByByTyG
AxSxSxGTyTySxGByByAxG

ψψψ
ψψϕψ ≤
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for all Xyx ∈, , φϕ∈  and ψ  is an almost altering distance. 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

By Theorem 5.9 and Theorem 5.3 we obtain 
Theorem 5.10  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 

))(,)(,)(

,)(,)({max()(
),,(

0
),,(

0
),,(

0

),,(
0

),,(
0

),,(
0

dtthdtthdtth

dtthdtthdtth
TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGByByAxG

∫∫∫

∫∫∫ ≤ϕ
 

for all Xyx ∈, , φ∈ϕ  and )(th  as in Theorem 5.1. 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Remark 5.3  By Examples 5.10 – 5.16 we obtain similar results.   
If tt =)(ψ , by Theorem 5.9 we obtain 
Theorem 5.11  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 

),}),,(),,,(),,,(
),,,(),,,({max(),,(

TyTyAxGByBySxGByByTyG
AxSxSxGTyTySxGByByAxG ϕ≤

 

for all Xyx ∈,  and φ∈ϕ . 
If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 

i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   

Corollary 5.1 (Theorem 2.2 (Giniswamy and Maheshwari, 2014)) Let 
),( GX  be a symmetric G  - metric space and SBA ,,  and T  four self 

mappings of X  such that 
1) ),( SA  and ),( TB  satisfy ),( TSCLR  - property, 
2) }),),,(),,,(,),,(,),,({max(),,( TzTyByGBzByTyGBzBySxGTzTySxGBzByAxG ϕ≤  
for all Xzyx ∈,,  and φ∈ϕ , 
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3) ),( SA  and ),( TB  are weakly compatible. 
Then SBA ,,  and T  have a unique common fixed point.   
Proof. If zy = , by 2) we have 

}).),,(),,,(,),,(,),,({max(),,( TyTyByGByByTyGByBySxGTyTySxGByByAxG ϕ≤

          
Since ),( GX  is symmetric and ϕ  is non decreasing, then 

,})),,(,),,(
,),,(,),,(,),,({max(
})),,(,),,(,),,({max(),,(

TyTyAxGByBySxG
ByByTyGAxSxSxGTyTySxG
ByTyTyGByBySxGTyTySxGByByAxG

ϕ
ϕ

≤
≤

 

and by Theorem 5.11, SBA ,,  and T  have a unique common fixed point.  
 

5.4. Fixed Points for ),( ψϕ  - Weakly Contractive Mappings in  
G  - Metric Spaces 

 
In 1997, Alber and Guerre-Delabriere (Alber and Guerre-Delabriere, 

1997) defined the concept of weak contraction as a generalization of contraction 
and established the existence of fixed points for self mappings in Hilbert spaces. 
Rhoades (Rhoades, 2001) extended this concept in metric spaces. In (Beg and 
Abbas, 2006), the authors studied the existence of fixed points for a pair of 

),( ψϕ  - weakly compatible mappings. 
New results are obtained in (Dorić, 2009; Raswan and Saleh, 2013) and 

in other papers. 
The study of common fixed points of ),( ψϕ  - weakly contractions with 

)(EA  - property is initiated in (Sintunavarat and Kumam, 2011). 
Also, some fixed point theorems for mappings with common limit 

range property satisfying ),( ψϕ  - weakly contractive conditions are proved in 
(Imdad and Chauhan, 2013) and in other papers. 

Definition 5.2 
1)  Let Ψ  be the set of all functions )0,)[0,: ∞→∞ψ  satisfying 
a) ψ  is continuous, 
b) 0=)0(ψ  and 0>)(tψ , 0>t∀ . 
2)  Let Φ  be the set of all functions )0,)[0,: ∞→∞φ  satisfying 
a) φ  is lower semi - continuous, 
b) 0=)0(φ  and 0>)(tφ , 0>t∀ .  

The following functions RR →+
6:F  satisfy conditions )(,)( 21 FF  and 

)( 3F . 

Example 5.17 }),,,(max{
2

,,,max)(=),...,( 6543
65

432161 tttt
tt

ttttttF φψψ +














 +

− . 
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Example 5.18  
















 +

φ+ψ−ψ
2

,,,max}),,,,(max{)(=),...,( 65
43265432161

tt
tttttttttttF . 

Example 5.19  

}),,,,(max{
2

,
2

,max)(=),...,( 65432
6543

2161 ttttt
tttt

ttttF φ+














 ++

ψ−ψ . 

Example 5.20  
















 +

φ+














 ++

ψ−ψ
2

,,,max
2

,
2

,max)(=),...,( 65
432

6543
2161

tt
ttt

tttt
ttttF

             
Example 5.21  

}),,(max{
2

,,,max)(=),...,( 655263
65

432161 tttttt
tt

ttttttF φ+














 +

ψ−ψ

Example 5.22  
}),,,,(max{}),,(max{)(=),...,( 65432645263161 ttttttttttttttF φ+ψ−ψ  

Example 5.23  

}),,,,(max{
1

)(=),...,( 65432
326443

625463
161 ttttt

tttttt

tttttt
tttF φ+















+++

++
ψ−ψ  

By Theorem 4.3 and Example 5.17 we obtain 
Theorem 5.12  Let SBA ,,  and T  be self mappings of a G  - metric 

space ),( GX  such that 
 

,)),(()),((),,( 21 yxMyxMByByAxG φψ −≤  
 
for all Xyx ∈, , where 
 

},
2

),,(),,(,),,(

,),,(,),,({max=),(1

TyTyAxGByBySxGByByTyG

AxSxSxGTyTySxGyxM
+  

 

},),,(,),,(,),,(,),,({max=),(2 TyTyAxGByBySxGByTyTyGAxSxSxGyxM  
Ψ∈ψ  and φϕ∈ . 

If ),( SA  and ),( TB  satisfy ),( TSCLR  - property, then 
i) ,),( ∅≠SAC  
ii) .),( ∅≠TBC  

Moreover, if ),( SA  and ),( TB  are weakly compatible, then SBA ,,  
and T  have a unique common fixed point.   
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TEOREME DE PUNCT FIX PENTRU 
 DOUĂ PERECHI DE FUNCŢII CU PROPRIETATEA LIMITEI 

 COMUNE ÎN SPAŢII G – METRICE  
 

(Rezumat) 
 

Scopul acestei lucrări este demonstrarea unei teoreme de punct fix pentru două 
perechi de funcţii în spaţii G  - metrice, care să generalizeze rezultatele din (Popa și 
Patriciu, 2014) şi să unifice rezultatele din (Giniswamy și Maheshwari, 2014). De 
asemenea, este obţinut un rezultat nou pentru un şir de funcţii. În ultima parte a lucrării, 
ca aplicaţii, sunt obţinute câteva rezultate de punct fix pentru funcţii care satisfac o 
condiţie contractivă de tip integral, pentru funcţii aproape contractive, pentru funcţii 
φ  – contractive şi ),( ψφ  – contractive în spaţii G – metrice. 
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Abstract. Radiotherapy is a critical and inseparable component of 

comprehensive cancer treatment and care. It is estimated that about 70% of 
cancer patients would benefit from radiotherapy for treatment of localized 
disease, local control, and palliation. Yet, in planning and building treatment 
capacity for cancer, radiotherapy is frequently the last resource to be considered.  
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1. Introduction 
 

Managing cancer requires both effective preventive measures to reduce 
future burden of disease, and health-care systems that provide accurate diagnose 
and high-quality multimodality treatment. Such multimodality treatment should 
include radiotherapy, surgery, drugs, and access to palliative and supportive 
care. Radiotherapy is perceived as a complex treatment. Estimation of the exact 
proportion of new cancer cases that will need radiotherapy is complex, in view 
of the variable patterns of cancer presentation and limited information on the 
current proportion of patients receiving radiotherapy. During the past 20 years, 
several investigators have developed evidence-based estimates of desirable 
radiotherapy use on the basis of the indication for radiotherapy in clinical 
practice guidelines and the distribution of cancer and different stages of disease 
at presentation. These estimates suggest that 60-70% of all patients with cancer 
will need radiotherapy. Radiation therapy acts both on tumor cells and normal 
tissue making the therapeutic benefit both toxicities and complications caused 
by acute and delayed treatment. Maintaining the balance between local tumor 
control and minimize side effects and complications remains a challenge for 
radiotherapy. Unfortunately, despite significant technological advances of the 
past three decades, more than 100 years of experience in radiotherapy, 
indicates that data on the effects of radiation are beneficial and detrimental in 
many cases.  

In historical perspective the first comments on the biological effects of 
radiation from the late IXX century belong to Gassmann (1898), which depicts 
two histological types of ray-induced chronic ulcer. The first study analyzing 
tolerances healthy tissues to radiation therapy has been published by Rubbin 
and Casarett treaty “Radiation Clinical Pathology” (1968). The paper presents a 
set of pictures taken during irradiation, highlighting the progression of lesions 
radiomucositis and described the evolution from acute to chronic and tardive. 
80-90 years of the twentieth century have made significant progress by 
introducing radiotherapy CT simulators, computer systems dosimetry of 
collimator and multi optimizations that allowed the transition to three-
dimensional radiotherapy volumes enabling evaluation of receiving certain 
doses. There were also introduced unique criteria for assessing the level of toxic 
effects of radiation in the form of scales, the LENT-SOMA being used and 
CTCAE (Dobbs et al., 2009). 

The first database, with correlations between organ volume receiving a 
given dose risk of complications is offered by prestigious study Emami (1991). 
It proposes dividing the organ on the basis of volumetric three 
recommendations restrictions being given doses 1/3, 2/3 and full organ. 
Original work, known as Emami Guide, was, despite its limitations, a review of 
medical literature until 1991. It is only for severe complications. 3D techniques, 
IMRT, VMAT were nonexistent at the time, so was used only conventional 



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 2, 2016                                     45 
 

fractionation (2Gy/fraction). In the 25 years since the publication of his work 
Emami, the practice has been completely revolutionized radiotherapy (Bortfeld 
et al., 2006; Van der Kogel and Joiner, 2009): 

 multi-disciplinary cancer treatment become standard; 
 end-points in the complications have changed; 
 3D-CRT and “inverse planning” totally replaced the 2D radiation 

therapy; 
 CT simulation images using CT, MRI and PET-CT become standard 
As a result, the dose distribution has become increasingly more 

complex and more recently, was placed 4-dimension (time). It became 
necessary to introduce new updated models correlation dose-volume-
complications. The Quantec work, resulting a collective effort by 57 experts, 
appears to support ASTRO (American Association of Radiotherapy) and 
AAPM (American Association of Medical Physics), and is published in the 
Supplement to the journal “International Journal of Radiation Oncology, 
Biology, Physics” (the Red Journal), Vol. 76, No. 3, 2010 (Nishimura and 
Komaki, 2015). This gives the review last 2 decades radiotherapy putting in 
relationships, in a detailed way, the parameters dose/volume with clinical 
complications. It also provides a simple set of data grouped into 16 
radiosensitive organs in order to provide a useful and easily accessible to 
validate plans carried out jointly by the radiotherapists, physicians and medical 
physicists (Van der Kogel and Joiner, 2009; Nishimura and Komaki, 2015).  

In an era of personalized medicine, progress means that radiotherapy 
beams can be shaped and modulated to conform to the exact shape of tumors, 
maximizing radiation dose deposition in the cancer while sparing normal tissues 
from high doses, those most likely to evoke normal tissue toxic effects. 
Radiotherapy is also a powerful instrument in palliation of symptoms associated 
with cancer. According to the survey noted, factors affecting normal tissues to 
radiation tolerance are:  

 patient  condition (age, comorbidities, Karnofsky score, pathogens, 
response to therapy); 

 organ radio sensibility variations; 
 serial dose-response organization (spinal cord); 
 organization of parallel volume effect (liver, lung); 
 serial and parallel mixed organization (kidney); 
 natural history of the tumor;  
 radio therapeutic treatment: dose value (maximum, medium, 

minimum dose), dose, overall treatment time, energy, irradiated volume;  
 non-radio therapeutic treatment: chemotherapy, surgery, i.e. 
In the context of the plurality of data from the medical literature, it aims 

to develop predictive models based on the dose-volume, which will act as a 
guide only and may not substitute medical experience.  
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With the development of mathematical models and radiobiological, 
more and more authors use conversion dose/fraction, at a dose equivalent 
biological dosimetry to compare different parameters. Izo-effect formula (1) 
based on the linear quadratic model and the index α/β is calculated from 
survival curves cell tumor model extrapolated to five.  

 

 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵

𝛼𝛼
= 𝐵𝐵 �1 + 𝑑𝑑

(𝛼𝛼+𝛽𝛽)� 
 

 (1) 
 

Failure assessment values α/β in human tumor tissue makes use of 
radiobiological model, with more than indicative value, cannot be 
recommended as routine practice. Applying value BED (2) or 2Gy equalization 
formula should be implemented taking into account the limits of the model 

 
𝐵𝐵𝐸𝐸𝐵𝐵2 = 𝐵𝐵 �1 + 𝑑𝑑+(∝ 𝛽𝛽⁄ )

2𝐺𝐺𝐺𝐺+(∝ 𝛽𝛽⁄ )�                                (2) 
 
and certain physical and biological parameters that were taken into account in the 
work underlying the guidelines dosimetric (Van der Kogel and Joiner, 2009): 

 dose/fraction has a significant impact in the acute and late 
complications; 

 1.8 or 2Gy/fraction /5 fractions/ week is considered standard 
fractionation; 

 most publications of the last two decades considered the report of 
α/β = 2 for CNS; 

 BED Quantec publications calculated using a value of α/β = 3 for 
CNS; 

 IMRT technology allows the use of any fractional (integrated boost) 
that makes it difficult to evaluate existing plans after recommendations. 

With broad deployment IMRT and VMAT techniques, Niemierko 
proposed a biological model for assessing treatment plans that would be 
applicable to non-uniform dose distributions. At its core are the parameters 
EUD (equivalent uniform dose transmitted tissue would produce the same effect 
on cell populations) and NTCP (healthy tissue likelihood of developing 
complication) (Schwartz et al., 2005; Rubin et al., 2014). NTCP use in clinical 
practice is recommended only as a guide, new studies are needed to validate this 
parameter as a predictor of toxicities. 
 

A. Central Nervous System (CNS) & Sensorial Organs 
 

1. Brain tissue. Brain tissue radiation toxicity is the neurocognitive 
impairment and cerebral radionecrosis. This generally occurs between three 
months and several years (average 1-2) from irradiation (Hayes and Kruger, 2007). 
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Volume Dose Risk of Radionecrosis 
 1/3cerebral volume D < 60Gy 5% (Emami et al., 1991) 
 D max < 60Gy 3% 
 D max = 70Gy 5% 
 D max = 90Gy 10% 
α/β = 3 BED D = 120Gy 5% 
SRT D > 12Gy 20% 
children D total (WBRT) > 18Gy Neurocognitive modifications 
 Re-irradiation  α/β = 2 
(2Gy equivalent) 

 D total < 100Gy  

 
Risk Factors (Bentzen et al., 2010; Marks, 2010a; Marks, 2010b):  

 old age / young (children); 
 female gender; 
 NF-1 mutation; 
 extensive surgery; 
 diabetes;  
 hydrocephalus; 
 chemotherapy (especially with methotrexate);  
 dose/fractionation/volume; 
 a low index of conformity; 
 location of the target volume. 
 

2. Brainstem. Induced toxicity on the brainstem can be debilitating and 
potentially lethal due to its origin at this level of the 12 pairs of cranial nerves: 

 
Volume Dose Toxicity risk (%) 

100% brainstem < 50Gy 5% (Emami et al., 1991) 
100% brainstem < 54Gy 5% 

V < 1-10 cm3 < 59Gy < 5% 
V < 1 cm3 < 64Gy < 5% 

SRT D max > 12.5Gy  

 
Risk Factors (Bentzen et al., 2010; Lawrence et al., 2010):  

 hypertension;  
 diabetes;  
 number surgery; 
 target volume in proximity; 
 MRI imaging for a lack of planning. 
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3. Spinal cord. Bone marrow toxicity of radiation is rare but severe 

consequences (paralysis, sensory deficit, pain, urinary incontinence). Toxicities 
were evaluated doses of 2-9Gy /fraction, calculating the equivalent dose of 
26Gy to a value α/β = 0.87 (Dawson et al., 2010; Emami, 2013). 
 
Risk factors (Bentzen et al., 2010; Mayo et al., 2010a; Mayo et al., 2010b):  

 neurotoxic chemotherapy; 
 segment irradiated bone marrow (cervical bone is more sensitive 

than chest probably the components of cranial nerves - IX, X, XI, XII); 
 young age (children). 

 
Volume Dose Risk for myelopathy (%) 

 D max = 50Gy 0.2% 
 D max = 60Gy 6% 
 D max = 69.6% 50% 
SRT – unique dose D max = 13Gy 1% 
SRT – hyper fractions D max = 20.6Gy 1% 
Re-irradiation             25% dose “forgotten” after 6 months 

 
4. Optic nerves & optic chiasma. Optic neuropathy is rare and is 

manifested by rapid and painless loss of vision (Van der Kogel and Joiner, 
2009; Kirkpatrick et al., 2010).  

 

Volume Dose Risk for Optic neuropathy 
(%) 

Whole volume organ D < 50Gy  
 D max  = 54Gy < 3% 
 D max = 55-60Gy > 3-7% 
 D max = 60Gy > 7-20% 

 
Risk Factors (Bentzen et al., 2010; Kirkpatrick et al., 2010): 

 age; 
 diabetes; 
 hypertension; 
 chemotherapy(anticancer agent - Bevacizumab has a protective effect); 
 re-irradiation (dose fraction within the first irradiation). 
 
5. Retina. Radiation induced retinopathy is a decrease in visual acuity 

similarly to diabetic retinopathy. There were reported rarely retinopathy 
radiation induced at doses below 50Gy, but for doses < 45Gy received by 
posterior pole, it is practically non-existent (Dobbs et al., 2009; Van der 
Kogeland Joiner, 2009). 
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Risk Factors (Bentzen et al., 2010; Bhandare et al., 2010): 
 hypertension; 
 diabetes;  
 dose/volume/fractionation (to 3-fold decrease in the risk of 

retinopathy by hyper fraction).  
 
6. Cochlea. Damage of cochlea consists in neurosensorial hearing 

loss. High frequency hearing impairment is more common than at low 
frequencies. Age and high acuity hearing before treatment and chemotherapy 
with Cisplatin are factors that significantly affect toxicity. Occurrence of otitis 
media after radiotherapy is considered a significant factor (Bentzen et al., 
2010; Deasy et al., 2010). 

 
Volume Dose Neurosensorial risk (%) 

concomitant with cisplatin D < 45Gy < 30% 
 D med < 47Gy < 15% 

SRT D max < 14Gy < 25% 
 

Risk factors (Dobbs et al., 2009; Bentzen et al., 2010; Deasy et al., 2010): 
 total dose of irradiation; 
 age; 
 positioning a target volume; 
 dose of cisplatin 
 hearing aid existing pathologies and subsequent irradiation. 

 
B. Head & Neck 

 
1. Parotids, submandibular and sublingual salivary glands. 

Impaired secretion of salivary glands (xerostomia) is common for cephalic 
extremity irradiation and can be a cause of deteriorating quality of life patient 
for a period of up to 2 years after completion of radiotherapy. Xerostomia is 
to reduce salivary flow and significantly reduces its risk by reducing the dose 
from a single submandibular gland (recommended doses < 35Gy). Xerostomia 
grade IV (decrease by more than 75% of salivary volume) was the threshold 
for who proposed building dosimetry and is a risk factor for oral bacterial 
and fungal superinfections after radiotherapy (Dobbs et al., 2009; Rancati et 
al., 2010). 

 

Volume Dose Risk for Xerostomia (%) 
    Bilateral parotids D med < 25Gy < 20% 
   Unilateral parotid D med < 20Gy <  20% 
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Risk Factors (Bentzen et al., 2010; Marks et al., 2010a; Marks et al., 2010b):  
 drugs that interferes with salivation; 
 eating disorders; 
 rheumatologic diseases; 
 smoking. 
 
2. Mandible. Rates of osteonecrosis of the jaw has dropped 

considerably with the introduction of IMRT and VMAT techniques (Dobbs et 
al., 2010; Marks et al., 2010a; Marks et al., 2010b). 

 
Dose Risk for Osteonecrosis (%) 

D max < 70Gy < 5% 

 
Risk Factors (Bentzen et al., 2010):  

 radiation dose;  
 chemotherapy; 
 dental hygiene; 
 tumor site; 
 oro-maxillo-facial surgery history. 

3. Pharyngeal constrictors muscles. Dose escalation irradiation for 
head and neck cancers has increased the rate of late toxicities (dysphagia and 
aspiration) on swallowing mechanisms. Some studies have associated toxicity 
with the dose received by superior and medium pharyngeal constrictor muscles, 
others studies considered relevant only the dose received by inferior pharyngeal 
constrictor muscle (Kavanagh et al., 2010). 

 
Dose Toxicity risk (%) 

Dmedie < 50Gy 20% 

Dmax < 70Gy < 5% (compulsory PEG, aspiration) 

 
Risk Factors (Bentzen et al., 2010; Marks et al., 2010a; Marks et al., 2010b):  

 local advanced neoplasms; 
 concomitant chemotherapy (hazard of swelling and dysphagia). 
 
4. Larynx. Radiation toxicity affecting the larynx include laryngeal 

edema formation and (especially glottis). Radionecrosis laryngeal cartilages risk 
is low in the context of using modern techniques, but remains present in 
particular as a consequence the long term (Marks et al., 2010a; Marks et al., 
2010b). 



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 2, 2016                                     51 
 

 
 Dose Toxicity risk (%) 

RTE +CHT Dmax  < 66Gy < 20% (dyspnea) 
RTE +CHT Dmax  < 50Gy < 30% (aspiration risk) 
 Dmedie < 44Gy < 20% (edema) 

 
Risk factors (Dobbs et al., 2009; Bentzen et al., 2010; Marks et al., 2010a; 
Marks et al., 2010b; Michalski et al., 2010; Pan et al., 2010): 

 concurrent chemotherapy; 
 staging (except T1, larynx glottis → low risk of impaired phonation); 
 concomitance with EGFR inhibitors (cetuximab) → mucositis/infections. 

 
C. Thorax 

 
1. Brahial plexus. Brachial plexopathy may be manifested by pain, 

paresthesia or upper limb motor deficit. Muscular atrophy and edema are 
occasional complications. Toxicity can signal and after 5 years of the end of 
radiotherapy (Dobbs et al., 2009; Van der Kogel and Joiner, 2009; Roach et al., 
2010; Viswanathan et al., 2010). 

 
Volume Dose Risk of plexopathy (%) 

Whole brachial plexus         D max  < 60Gy < 5% 
 
Risk Factors (Bentzen et al., 2010):  

 hyper fractionated regimes; 
 Lymphadenectomy; 
 obesity;  
 hypertension; 
 diabetes 
 valvulopathy. 

2. Lungs. Radice pneumonitis is one of the most common toxicities in 
patients receiving radiation for lung neoplasms: breast, esophagus and 
mediastinal lymphadenopathy. The risk of developing pneumonitis radice 
limited dosage used in treating these malignancies (Van der Kogel and Joiner, 
2009; Gagliardi et al., 2010; Werner-Wasik et al., 2010). 

 
Volume Dose Pneumonitis radice risk (%) 

V5 < 42% D med = 7Gy 5% 
V20 < 22%         D med < 13Gy 10% 
V20 < 31% D med < 20Gy 20% 
V20 < 40% D med < 24Gy 30% 
 D med < 26Gy 40% 
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Risk factors (Bentzen et al., 2010; Gagliardi et al., 2010):  

 chemotherapy with taxanes, gemcitabine; 
 concomitant therapy with TKI inhibitor (erlotinib); 
 pre-existing lung diseases 

3. Heart and pericardium. Pericarditis and cardiac mortality in the 
long run are two of the most common toxicities. Increase in survival for patients 
with breast cancer and lymphoma requires revaluation heart of the doses 
received and their correlation with late mortality. 

 
 Volume Dose Toxicity risk (%) 

RTE +Adriamicina 3/3 heart   
V25 < 10% 

D < 15Gy 1% risk 15 years after the end of 
irradiation 

RTE +Adriamicina 3/3 heart   
V30 < 46% 

D < 30Gy Risk < 15% (pericarditis) 

 
Risk factors:  

 age; 
 sex; 
 diabetes; 
 hypertension; 
 high levels of cholesterol;  
 smoking; 
 family history of heart. 
 
4. Esophagus. Radice esophagitis is constant during irradiation of 

thoracic tumors, and is manifested by dysphagia, swallowing and may adversely 
affect the patient's condition causing discontinuation of treatment. 

 

 
Risk factors: 

 aged  > 70 years; 
 hyper fractionated regimes; 
 concomitant boost; 
 concurrent chemo-radiotherapy; 
 large number of hotspots in the treatment plan. 

Volume Dose Risk of radice esophagitis (%) 

   V35 < 50% D med < 34Gy Grd III = 5-20% 
   V50 < 40%  Grd II  < 20% 
   V70 < 20 %       
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D. Abdomen 
 
1. Liver. Radio-induced hepatitis usually occurs between 2 weeks and 3 

months after completion of radiation therapy, the radiation dose limiting 
complication of biliary tumors and upper digestive tract. Subacute form of 
hepatitis is usually manifested by fatigue, abdominal pain, hepatomegaly, 
ascites anicteric, increased alkaline phosphatase and liver enzymes. 

 
Volume Dose Hepatitis risk (%) 

Liver cancer with 
preexisting disease 

D med < 30Gy 
D med < 28Gy 

5% 

Whole organ ≤ 30Gy (2Gy/fr) 
≤ 21Gy (3Gy/fr) 
< 28Gy (2Gy/fr)                                                   
< 21Gy (3Gy/fr) 
 

5% 

 D med < 42Gy 
 

 

Liver metastasis  D med < 13Gy (3fr)              
D med < 18Gy (6fr) 

< 5% 

 
Risk factors: 

 hepatocarcinoma > metastases; 
 hepatitis B and C; 
 portal thrombosis; 
 chemotherapy; 
 chemoembolization; 
 tumor stage; 
 male gender; 
 score Child - Pugh. 
 
2. Stomach. Late toxicity manifests as gastric ulceration and dyspepsia. 

Loss of appetite, feeding behavior and disturbances in fluid intake can lead to 
malnutrition and cachexia, exacerbating the patient's condition. 

 
 Volume Dose Risk of gastric toxicity (%) 
 3/3 stomach  D  < 50Gy                                   
   SRT V 22.5 < 4% / 5 cm3 D max < 30Gy 

(3Gy/fr) 
                   5-7%                 

 
3. Small intestine. Gastro-intestinal toxicity is significantly increased 

in case of concurrent chemotherapy or previous abdominal surgery. Decrease of 
absorption, diarrhea, impaired intestinal flora and pathogens are frequent 
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complications during irradiation for abdominal and pelvic tumors.  New studies 
show that large volumes of small intestine receiving relatively low doses are 
correlated with acute toxicity. If the individual emerges intestines, the most 
representative volume predictor of toxicity is V15. Late toxicity consists of 
obstructions, perforations and is commonly associated with abdominal wall 
surgery. 

 
Organ Volume Dose Risk of enteric toxicity (%) 

Intestinal coils  V15 < 150 cm3 D < 50Gy 10% 
Peritoneal cavity V45 < 195 cm3 D < 50Gy 10% 
1/3 small intestine V50 < 51% D < 50Gy  
SRT V12.5 < 30 cm3 D max < 30Gy    

(3-5Gy/fr) 
10% 

 
Risk factors: 

 anatomical conformation (large intestines in the field of radiation); 
 abdominal surgery; 
 cardiovascular pathologies; 
 diabetes; 
 chemotherapy (adriamycin, 5-FU); 
 

E. Pelvis 
 
1. Rectum. Improving regimens irradiation in prostate cancer with the 

decrease of late post-radiotherapy rectal toxicity has made many of these 
patients as long term survivors. Dose escalation, by moving from 2D and 3D 
techniques to IMRT required the assessment of dosimetric parameters 
correlated with late proctopathia. 

 
Volume Toxicity risk grd II (%) Toxicity risk grd III (%) 

    V50 < 50%       15% 10% 
    V60 < 35%         15% 10% 
    V70 < 20%        15% 10% 
    V75 < 15%        15% 10% 

 
Risk factors:  

 diabetes; 
 inflammatory digestive diseases; 
 hemorrhoids; 
 age; 
 treatment with anti-androgens; 
 size rectum; 
 abdominal surgery. 



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 2, 2016                                     55 
 

2. Bladder elasticity makes difficult a performing dosimetric analysis 
with predictive toxicity. Affecting the entire body may be manifested by 
dysuria, urinary frequency, bladder spasm, reducing the flow urinary 
incontinence. Damage is focal manifestations: hematuria, fistula, obstruction, 
ulceration and necrosis. 
 
Risk factors: 

 hormone therapy; 
 chemotherapy (cyclophosphamide); 
 TUR-V&TUR-P; 
 underlying genitourinary pathology; 
 hysterectomy; 
 obesity; 
 smoking; 
 black race; 
 age; 
 diabetes. 

3. Kidney. Renal dysfunction after radiotherapy can cause symptoms 
and biochemical and radiological changes form. High latency ranges are as 
renal toxicity late to be undervalued. Most studies have evaluated serum 
creatinine clearance decreased in relation to the dose received by both kidneys. 
 
Risk factors: 

 renal failure; 
 diabetes; 
 cardiac pathologies; 
 smoking. 

 
4. Penile bulb. Erectile dysfunction can be a cause of discomfort for 

patients with prostate cancer. The dose received by the penile bulb is considered 
a predictor. 

 

 
Risk factors: 

 age; 
 diabetes; 
 treatment with anti-androgens; 
 hypertension; 
 smoking 

Volume Dose Toxicity risk (%) 
V60-V70 < 70Gy   D med < 52Gy < 55% 
V90 < 50Gy  D med 95% din gland < 50Gy < 35% 
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F. Other Radiosensitive Organs 
 

Radio-sensitive organs outside Quantec included in the guide, benefit 
the records of the toxic and other parts of the body. Keeping average dose 
associated with various complications, below the various studies, may help 
optimize quality of life. In clinical practice, to assess the dose equivalent 
hypo-fractionated regimes use the value ratio α/β = 10Gy to the tumor tissue 
and α/β = 3Gy for late toxic effects. For a more precise risk assessment of the 
possibility of toxic and tumor control is recommended in the report izo-
equivalent formula α/β correlated with each organ specific toxicities 

 
 

Legend 
 

D max – maximum dose received by an organ; 
D medium – average dose received by an organ; 
Vx – The volume of the organ receiving the higher dose of "x" Gray; 
Dy – minimum dose received by the 'y'% of an organ; 
SRT – Stereotactic Radiotherapy; 
WBRT – "Whole brain" Palliative Radiotherapy; 
PEG – percutaneous gastrostomy; 
IMRT – intensity modulated radiotherapy external; 
VMAT – intensity modulated radiotherapy external volume (with continuous 

irradiation Rotational); 
Anti - EGFR – epidermal growth factor inhibitor; 
TKI – tyrozin kinase inhibitor; 
5FU – 5-Fluorouracil; 
ACE – inhibitor of angiotensin converting enzyme; 
CT – computed tomography; 
MRI (MRI) – magnetic resonance imaging; 
REVERSE PLANNING – planimetric technique is proposed the conformation 

bundles computer after dosimetry constriction introduced by physicist; 
Quantec – Quantitative Analyses of Normal Tissue Effects in the Clinic; 
PET-CT – Positron emission tomography; 
E – biological effect; 
α/β – The ratio of intrinsic cellular radiosensitivity and cell fraction which 

completely repaired lesions in 6 hours or more; 
EUD – equivalent uniform dose transmitted tissue would produce the same 

effect on cell populations; 
NTCP – Probability healthy tissue of developing complications; 
EQD2 – 2Gy fractionated dose equivalent that would produce the same 

biological effect as prescribed. 
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DOZA TOTALĂ CORELATĂ CU VOLUMUL TUMORAL ȘI RISCUL DE 
TOXICITATE ÎN RADIOTERAPIA MODERNĂ 

 
(Rezumat) 

 
Radioterapia este o componentă esențială și inseparabilă în contextul 

tratamentului multidisciplinar al cancerului. Se estimează că aproximativ 70% dintre 
pacienții cu cancer ar putea beneficia de radioterapie pentru tratamentul bolii localizate, 
controlul local și paliativ. Cu toate acestea, în planificarea și implementarea secvențelor 
terapeutice oncologice, radioterapia este frecvent ultima resursă care se ia în 
considerare. 
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Abstract. Rinosinusal cancers accounts for about 3% of all malignancies, 

most developing to the maxillary sinuses (70%), followed by ethmoid (20%), 
frontal (3%) and sphenoidal (1%) sinuses. Anatomical position and late 
symptomatology in advanced stages make these malignancies difficult to 
diagnose, surgical approach and adjuvant treatment with radiation having a role 
in getting local control. Radiosensitive organs in proximity made difficult to 
deliver tumoricidal dose irradiation by conventional radiotherapy. 
Implementation of 3D-CRT technologies (3D conformal) based on the use of 
MLC (multi-leaf collimator) and then inverse planning techniques IMRT 
(intensity modulated radiation therapy) and VMAT (volumetric modulated arc 
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therapy) resulted in dose reductions in OAR (organs at risk) and better dose 
homogeneity in PTV (planning target volume).  

 

Keywords: radiotherapy; paranasal sinuses; IMRT; VMAT. 
 

1. Introduction 
 
Nasal cavity and paranasal sinuses cancers include tumors originate 

from the paranasal cavities (ethmoid, maxillary, frontal and sphenoidal) or 
from the nose (excluding nasal vestibule) and is a rare type of cancer, about 
0.2-0.8% of all cancers and 5% of head and neck cancers. It is often late 
diagnosed with nonspecific clinical symptoms having high tumor aggressivity 
and a poor prognosis. Most commonly occurs in the maxillary sinus (70%), 
followed by ethmoid (20%), frontal (3%) and sphenoidal (1%) sinus (Jégoux 
et al., 2013). Surgical resection with negative margins followed by adjuvant 
radiotherapy is the optimal treatment. In some advanced cases surgical 
anatomical limits make impossible a complete resection, definitive 
radiotherapy with or without concurrent chemotherapy being the only 
therapeutic option. The challenge to deliver a tumoricidal dose on a relatively 
large volume in the immediate vicinity of radiosensitive critical organs (optic 
nerves, lenses, optic chiasma, brain) made necessary the development of new 
high precision methods in radiotherapy. Inverse planning techniques provides 
superior dose conformity compared to 2D and 3D radiotherapy often 
associated with high toxicity: radical cataract, dry eye syndrome caused by 
lacrimal gland function loss, retinopathy or even blindness caused by 
irradiation of optical aperture (optic nerve and chiasm). Non-coplanar IMRT 
technique can provide superiority in terms of organs at risk protection, 
especially for tumors of the nasal cavity and for target volume situated 
between the eyes. Implementation of rotational intensity modulated technique 
VMAT brings advantages over IMRT technique in particular by decreasing 
treatment time and number of monitor units (Bortfeld et al., 2006). The paper 
aims to benchmark target volume coverage and mean doses and Dmax 
(maximum doses) receive by organs at risk in case of neoplasm of maxillary 
sinus locally advanced, comparing alternative treatment plans IMRT and 
VMAT (two  half arcs, single arc, double arc) (Jeong et al., 2014). 

 
2. Materials and Methods 

 
We present a case of a locally advanced right maxillary sinus cancer 

who received definitive radiotherapy in total dose DT = 66Gy/33fr/PTV-T 
(3D-CRT technique). For a patient with an advanced right maxillary sinus 
cancer previously treated with 3D-CRT radiotherapy, IMRT and VMAT 
alternative plans were proposed (two  half arcs, single arc and  double arc) 
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comparing the dose to OARs, MU (number of monitor units) and target 
volume coverage. All plans offered doses in accepted limits for organs at risk 
with similar target volume coverage. VMAT technique offers the advantage of 
a short treatment time and is a feasible option for busy radiotherapy centers 
(Biagioli et al., 2007).  

Patient immobilization was made using a thermoplastic mask and for 
target delineation volumes (GTV, CTV, PTV) was performed CT simulation, a 
rigid registration being made between the diagnosis and the simulation CT. 
Delineation of interest volumes, organs at risk and dosimetry calculation were 
performed by Eclipse Treatment Planning System™(TPS) software. Dosimetric 
evaluation of treatment plans took into account target coverage by the 95% 
isodose and doses received by organs at risk according to recommendations of 
Quantec and Emami papers (Miura et al., 2012). In order to verify the accuracy 
of the positioning, X-rays kV was performed weekly (every 5 fractions) from 
the treatment machine, a linear accelerator Varian Clinac iX with 120 multi-leaf 
collimator. 

Subsequently alternative plans were proposed by coplanar IMRT and 
three different plans using VMAT different from each other by the angle 
described by the gantry (two half arcs, single or double arc) for a comparative 
dosimetric evaluation, reproducibility with plans being validated by 
ArcCHECK® platform (Figs. 1-3). 

Conformity index-CI (ratio of volume surrounded by 95% isodose and 
the volume of PTV), homogeneity index-HI (the ratio of difference between 
volume which receives 2% and 98% of the prescribed dose and the volume 
surrounded by 50% isodose) for target volume (PTV), were evaluated together 
with mean dose (Dmean), maximum dose (Dmax) and the number of monitor 
units for each technique received by the OARs. 

 

 
Fig. 1 ‒ Beam orientation for 3D-CRT plan. 
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Fig. 2 ‒ Beam orientation for IMRT plan. 
 

 

 
 

Fig. 3 ‒ Half arc radiotherapy plan – beam angle 
 rotation and isodose curves. 

 
3. Results 

 
All doses received by organs at risk using IMRT and VMAT techniques 

(two half arcs, single arc, double arc) were compared to the dose received by the 
same organs in 3D-CRT technique (Fig. 4). 
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Fig. 4 ‒ DVH comparison for OAR and PTV between 
 IMRT and VMAT- 2 arcs plans. 

 
IMRT method significantly reduces the mean dose received by spinal 

cord (46.77%) but significantly increase the dose to the right optic nerve 
(70.03%). The VMAT methods (two half arcs, single arc, double arc) shows the 
disadvantage of significantly increasing the dose received by the brainstem with 
48.28%, 55.61%, 60.59%, optic nerve as with 65.16%, 79.93%, 84.93% and 
optic chiasm 62.36%, 57.50% and 31.64% (Table 1). 

 
Table 1 

 Absolute (cGy) and Relative Dmean for OAR Reported to 3D-CRT 
 Absolute number of MU Relative number of MU 

Radiotherapy 
Technique 

3D -
CRT 

IMRT VMAT- 
1/2 arc 

VMAT- 
1 arc 

VMAT- 
2 arcs 

IMRT 
(%) 

VMAT- 
1/2 arc (%) 

VMAT- 
1 arc (%) 

VMAT-  
2 arcs (%) 

Spinal cord 38.70 20.60 32.30 35.30 31.90 -46.77 -16.54 -8.79 -17.57 

Brainstem 1403.20 1715.10 2080.70 2183.50 2253.40 22.23 48.28 55.61 60.59 

Brain 502.90 547.40 357.70 738.00 739.40 8.85 -28.87 46.75 47.03 

Left eye 769.40 789.70 517.00 553.80 605.30 2.64 -32.80 -28.02 -21.33 

Left lens 322.40 284.20 289.60 290.90 294.90 -11.85 -10.17 -9.77 -8.53 

Right eye 1488.30 1321.80 1047.30 1022.70 972.90 -11.19 -29.63 -31.28 -34.63 

Right lens 329.90 354.20 325.30 368.50 382.00 7.37 -1.39 11.70 15.79 

Right optic nerve 1443.60 2454.60 2384.30 2597.50 2669.70 70.03 65.16 79.93 84.93 

Left optic nerve 1920.40 2541.30 1496.60 1656.40 1740.60 32.33 -22.07 -13.75 -9.36 

Optic chiasma 1702.30 1546.00 2763.90 2681.10 2240.90 -9.18 62.36 57.50 31.64 

 
All VMAT methods decrease the mean dose to the spinal cord, 

contralateral eye and contralateral lens. The maximum dose is reduced or almost 
equal for all OARs except spinal cord in which significant increases were 
observed (57.87%, 62.53%, 37.57%). 
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 IMRT technique significantly increases the number of M.U. compared 
to the number of M.U. delivered by 3D-CRT (128%). VMAT techniques (two 
half arcs, single arc, double arc) decrease the number of MU with 31.67%, 
27.67%, 30.67% (Table 2). 
 

Table 2  
Absolute and Relative Number of MU Reported to 3D-CRT 

 
CI closest to the optimum value “1” is obtained with IMRT techniques 

and VMAT and HI is closest to the optimum value “0” technique IMRT (Table 3). 
 

Table 3 
 Absolute (cGy) and Relative Dmax for OAR Reported to 3D-CRT 

 Absolute number of MU Relative number of MU 

Radiotherapy 
Technique 

3D -
CRT IMRT VMAT- 

1/2 arc 
VMAT- 

1 arc 
VMAT- 
 2 arcs 

IMRT 
(%) 

VMAT- 
1/2 arc (%) 

VMAT- 
1 arc (%) 

VMAT- 
 2 arcs (%) 

Spinal cord 195.10 169.00 308.00 317.10 268.40 -13.38 57.87 62.53 37.57 

Brainstem 4791.5 4965.8 4091.4 4089.7 4191.3 3.64 -14.61 -14.65 -12.53 

Brain 6462.2 6132.1 6581.0 6115.9 6075.4 -5.11 1.84 -5.36 -5.99 

Left eye 3365.6 3645.4 1564.1 1882.7 2143.7 8.31 -53.53 -44.06 -36.31 

Left lens 574.10 469.90 495.70 504.60 515.90 -18.15 -13.66 -12.11 -10.14 

Right eye 6105.5 6026.7 5870.7 5648.1 5605.0 -1.29 -3.85 -7.49 -8.20 

Right lens 608.10 657.40 463.40 505.00 505.60 8.11 -23.80 -16.95 -16.86 

Right optic nerve 3392.7 4609.6 4862.6 5130.8 5065.0 35.87 43.33 51.23 49.29 

Left optic nerve 3303.8 3803.1 2393.5 2508.3 2681.1 15.11 -27.55 -24.08 -18.85 

Optic chiasma 4761.3 4026.3 4569.6 4482.5 4226.4 -15.44 -4.03 -5.86 -11.23 

 
4. Discussion 

 
 In head and neck cancer radiotherapy dosimetry, a 43-45Gy 

constriction spinal cord in order to reduce the risk of radio-induced myelopathy, 
limits delivered dose in the target volume during conventional radiation therapy. 
Inverse planning techniques made possible the simultaneous irradiation with 
different fractionations and different doses for different volumes allowing dose 
escalation in the areas of tumor radio-resistance. The inclusion of functional 

 Absolute number of MU Relative number of MU 

Radiotherapy 
technique 3D IMRT VMAT- 

1/2 arc 
VMAT- 

1 arc 
VMAT- 
2 arcs 

IMRT 
(%) 

VMAT- 
1/2 arc (%) 

VMAT- 
1 arc (%) 

VMAT- 
2 arcs (%) 

MU 300.00 684.00 395.00 383.00 392.00 128.00 31.67 31.67 30.67 
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imaging PET-CT and diffusion MRI combined with a high-resolution structural 
imaging could bring benefit in dose escalation. 

Basic treatment leads to local failure in 70%. Salvage therapy has a 
success rate of 30-40% off in head and neck cancers but few patients will be 
long-time survivors. Re-irradiation and chemo-radiotherapy using IMRT 
technique are feasible options decreasing the risk of medullary toxicity. 

Miura and collaborators have obtained a dose reduction for brainstem 
and brain by using half-arc VMAT radiotherapy. Similar results were obtained 
in the case presented for half-arc VMAT method. 3D and IMRT technique still 
offers best dose solutions for the brainstem but 2 half-arcs VMAT method 
offers the lowest mean dose for the brain. 

For advanced cases involving large irregularly shaped, requiring 
elective lymph node irradiation, non-coplanar IMRT and VMAT techniques 
offers dosimetric advantages but clinical benefits will be validated in the future 
(Orlandi et al., 2014). 

 
5. Conclusions 

 
VMAT technique offers a rapid option with comparable dosimetric 

results and coverage of the target volume in maxillary sinus cancer. By 
significantly reducing the dose to the spinal cord compared to 3D-CRT, IMRT 
can be used in selected cases for dose escalation in order to improve local 
control. Saving machine-time can be an advantage for choosing VMAT in 
crowded radiotherapy centers. 
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EVALUARE DOZIMETRICĂ COMPARATIVĂ A 

 DIFERITELOR TEHNICI DE RADIOTERAPIE (3D-CRT, IMRT, VMAT)  
ÎN TRATAMENTUL CANCERELOR RINOSINUSALE 

  
(Rezumat) 

 
Cancerele rinosinusale reprezintă aproximativ 3% din totalul afecțiunilor 

maligne, majoritatea dezvoltându-se la nivelul sinusurilor maxilare (70%), urmate de 
etmoid (20%), sinusurile frontale (3%) și sfenoidale (1%). Poziția anatomică și 
simptomatologia tardivă fac ca aceste tumori maligne să fie dificil de diagnosticat, 
adesea fiind descoperite în stadii avansate. Abordul chirurgical și tratamentul adjuvant 
cu radiații are un rol esențial în obținerea controlului local. Organele radiosensibile 
aflate în proximitate fac dificilă livrarea unor doze de iradiere tumoricidale prin 
radioterapia convențională. Implementarea tehnologiilor 3D-CRT (3D conformațional), 
bazate pe utilizarea MLC (colimator multi - lamă) și apoi a tehnicilor de planificare 
inversă IMRT (terapie cu radiații modulate în intensitate) și VMAT (terapie în arc 
modulată volumetric) a condus la reducerea dozelor la OAR (organe la risc) și o mai 
bună omogenitate a dozei în PTV (volumul țintă planificat). 
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Abstract. Head & neck malignancy are cancers where radiotherapy is often 
the main method of treatment especially in advanced cases outdated for surgery. 
To analyze the dosimetric effects of a biaxial 3 mm position change from 
isocenter a + 3 mm shift on the X and Y axes was applied. Doses received by 
OAR (organs at risk) and target volumes treated with sequential boost were 
evaluated - PTV-T (target volume of the primary tumor) which received 
70Gy/35 fractions, PTV-N66 witch received 66Gy/33 fractions and PTV-N50 
irradiated with 50Gy/25 fractions. Evaluation of Dmax, Dmin and Dmean was done 
both for target volumes and for OAR’s before and after applying the biaxial shift 
for 3D-CRT(3D-conformal) plans and IMRT (intensity modulated radiation 
therapy) and VMAT (volumetric modulated arc therapy) alternative plans. The 
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dose-volume effect was significant only for phase II and phase III. In case of 
some OAR’s for 3D-CRT technique the maximum recommended dose was 
exceeded.  

 

Keywords: radiotherapy; IMRT; VMAT; OAR. 
  
 

1. Introduction 
 
Head & neck malignancies are cancers for which radiotherapy is one of 

the main methods of treatment especially in advanced cases when surgical 
approach is impossible. For advanced nasopharyngeal cancer, surgical resection 
is almost impossible, concurrent radio-chemotherapy being the standard 
treatment. Surgery remains reserved for selective neck dissection in cases of 
persistent or recurrent nodal disease. High toxicity is one of the problems 
associated to conventional radiotherapy. IMRT technique provides better OAR 
protection (Fig. 1).  

 

 
 

Fig. 1 ‒ 3D reconstruction of organs at risk (OAR)  
in nasopharynx radiotherapy. 

 
Associated with a high coverage of target volume (Fig. 2) and a higher 

dose gradient. The presence of volumes receiving high doses in the immediate 
vicinity of protected tissues involves an increased risk of errors.  
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Fig. 2 ‒ 3D reconstruction of target volumes PTV-T (red), 

PTV-N66 (magenta), PTV-N50 (Yellow). 
 

Usage of CT simulation, orthogonal kV imaging systems for patient 
positioning and thermoplastic mask decreases the risk of random errors between 
each fraction. A calibration error of the treatment table or positioning lasers can 
induce a systematic error with unpredictable consequences for the treatment. To 
analyze the consequences of such an error a + 3 mm shift on X and Y axes was 
introduced, then recalculating being executed without 3D-CRT, IMRT and 
VMAT plans optimization. Dosimetric parameters Dmax, Dmin and Dmean for 
target volumes (each phase) and OARs were analyzed comparatively in absolute 
and relative values (Hong et al., 2005; Park and Park, 2016; Yan et al., 2013; 
Iancu and Iancu, 2004). 

 
2. Results 

 
For all techniques 3D-CRT, IMRT, VMAT significant decrease of Dmin 

(29.55%, 21.62%, 27.20%) for the phase III of the sequential boost treatment 
plan is observed in case of 3 mm biaxial shift application to isocenter. In the 
case of absolute dose delivered by IMRT technique, lower Dmin value associated 
with shift effect increases the risk of “cold spots”. The same phenomenon can 
be observed in the case of phase II, the minimum dose in phase I being less 
influenced in all situations (see Table 1). 
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Table 1 
Relative Variation of Dmin, Dmax and Dmean Received by the Target Volumes and Organs 

at Risk by Applying a + 3 mm Biaxially Isocentric Shift 

 
 

 
 

 
 
Dmax is less modified (minor increase) for all techniques without 

significant predictable clinical consequences. Also Dmean variations are 
insignificant for phase III using inverse planning techniques compared to 3D-
CRT technique. For phases II and III Dmean increases are approximately equal in 
all situations by applying isocenter shift (about 0.5%) (see Table 1). 

The consequences of applying biaxial shift for OAR is the Dmax 
decrease in most organs excepting left parotid and spinal cord. For all 
techniques 3D-CRT, IMRT, VMAT left parotid Dmax increases with 4.22%, 
2.08%, 3.03% and Dmean increases with 1.30%, 5.42% and 4.87%. For spinal 
cord Dmax increases with 13.79%, 4.20% and 7.33%, Dmean increases with 
3.73%, 4.13% and 5.17%, but only for 3D-CRT plan (Dmax = 51.18Gy) the 
absolute dose exceeds upper limit recommendation of  Quantec (see Table 1). 

DMIN
Phases and OARs 3D-CRT(cGy) 3D-CRT-SHIFT(cGy) IMRT(cGy) IMRT-SHIFT(cGy) VMAT(cGy) VMAT-SHIFT(cGy) 3D-CRT (%) IMRT (%) VMAT (%)
Phase III 5725.00 4033.30 3734.90 2927.40 6295.20 4583.00 -29.55 -21.62 -27.20
Phase II 3746.10 3400.40 3288.80 2583.70 5138.70 3931.90 -9.23 -21.44 -23.48
Phase I 2860.20 3106.80 5927.00 4926.80 3008.10 3060.00 8.62 -16.88 1.73
Left parotid 3345.40 3370.80 1390.40 1548.40 2589.70 2685.30 0.76 11.36 3.69
Right parotid 2824.90 2737.60 2095.10 1995.90 2517.40 2312.60 -3.09 -4.73 -8.14
Brain 27.30 26.20 13.00 12.10 15.30 14.30 -4.03 -6.92 -6.54
Brain stem 200.70 183.90 167.80 150.90 264.90 210.30 -8.37 -10.07 -20.61
Spinal cord 22.70 23.90 8.90 9.90 12.90 14.20 5.29 11.24 10.08
Left optic nerve 190.90 179.10 144.80 134.60 367.20 318.20 -6.18 -7.04 -13.34
Optic chiasma 293.80 262.90 246.00 216.10 160.20 146.10 -10.52 -12.15 -8.80
Right optic nerve 182.00 168.80 129.10 117.70 148.60 132.30 -7.25 -8.83 -10.97
Left lens 184.10 173.20 147.00 138.30 163.90 151.90 -5.92 -5.92 -7.32
Right lens 173.90 162.80 119.50 110.70 135.20 123.90 -6.38 -7.36 -8.36

Radiotherapy Technique (Absolute Dose) Radiotherapy Technique (Dose Change)

DMAX
Phases and OARs 3D-CRT(cGy) 3D-CRT-SHIFT(cGy) IMRT(cGy) IMRT-SHIFT(cGy) VMAT(cGy) VMAT-SHIFT(cGy) 3D-CRT (%) IMRT (%) VMAT (%)
Phase III 7564.70 7690.90 7441.00 7566.80 7427.70 7590.00 1.67 1.69 2.19
Phase II 7564.70 7690.90 7441.00 7566.80 7427.70 7590.00 1.67 1.69 2.19
Phase I 7564.70 7690.90 7416.90 7560.40 7427.70 7590.00 1.67 1.93 2.19
Left parotid 7242.80 7548.20 7326.30 7478.60 7077.20 7291.50 4.22 2.08 3.03
Right parotid 7177.20 7205.00 7218.30 7317.00 7047.60 7009.80 0.39 1.37 -0.54
Brain 6919.20 6642.30 6128.80 5901.40 6269.60 6229.90 -4.00 -3.71 -0.63
Brain stem 6518.70 6476.30 5498.80 5451.10 5609.30 5589.20 -0.65 -0.87 -0.36
Spinal cord 4498.00 5118.20 4364.40 4547.50 4254.40 4566.30 13.79 4.20 7.33
Left optic nerve 447.90 402.10 414.70 371.60 600.70 538.90 -10.23 -10.39 -10.29
Optic chiasma 444.60 381.80 402.90 338.60 509.10 454.30 -14.13 -15.96 -10.76
Right optic nerve 416.90 365.40 333.40 289.10 476.20 411.00 -12.35 -13.29 -13.69
Left lens 215.90 204.70 176.00 165.90 202.60 187.30 -5.19 -5.74 -7.55
Right lens 202.00 188.70 145.10 135.40 171.50 155.40 -6.58 -6.69 -9.39

Radiotherapy Technique (Absolute Dose) Radiotherapy Technique (Dose Change)

DMEAN
Phases and OARs 3D-CRT(cGy) 3D-CRT-SHIFT(cGy) IMRT(cGy) IMRT-SHIFT(cGy) VMAT(cGy) VMAT-SHIFT(cGy) 3D-CRT (%) IMRT (%) VMAT (%)

Phase III 7094.30 7100.50 6798.70 6831.00 7021.10 7034.80 0.09 0.48 0.20
Phase II 6902.90 6932.60 6213.90 6248.50 6803.80 6835.80 0.43 0.56 0.47
Phase I 6282.00 6316.20 7004.50 7039.60 6217.10 6251.50 0.54 0.50 0.55
Left parotid 5837.20 5913.00 4386.80 4624.40 4577.70 4800.60 1.30 5.42 4.87
Right parotid 5794.90 5348.40 4573.10 4156.40 4943.30 4439.80 -7.71 -9.11 -10.19
Brain 318.30 273.10 315.50 266.70 349.40 303.30 -14.20 -15.47 -13.19
Brain stem 1654.90 1443.60 1585.80 1361.50 1736.30 1525.30 -12.77 -14.14 -12.15
Spinal cord 2336.10 2423.30 2129.90 2217.90 1976.40 2078.60 3.73 4.13 5.17
Left optic nerve 304.40 279.20 258.50 235.00 473.80 417.60 -8.28 -9.09 -11.86
Optic chiasma 362.70 318.60 315.80 273.00 318.20 287.80 -12.16 -13.55 -9.55
Right optic nerve 294.90 266.30 231.20 206.90 305.00 268.40 -9.70 -10.51 -12.00
Left lens 200.10 188.60 160.30 151.10 182.20 168.30 -5.75 -5.74 -7.63
Right lens 188.60 176.30 133.30 124.10 154.20 140.90 -6.52 -6.90 -8.63

Radiotherapy Technique (Absolute Dose) Radiotherapy Technique (Dose Change)



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 2, 2016                                     71 
 

 
3. Discussion 

 
The use of modern radiotherapy methods has reduced the volume 

exposed to large doses of radiation therapy, improving treatment accuracy, 
reducing normal tissue toxicity related to irradiation, increased importance 
given to accurate position verification and correction before delivering 
radiotherapy. IGRT enables evaluation of geometry for treatment delivery 
providing a method by which deviations from the original plan of anatomy are 
determined and this information is used to correct the dosimetric parameters. 
Bony landmarks were easy to detect and correct and the table shifts for 
correction of setup deviations could be automatically calculated. An error in 
radiotherapy is any deviation from intended or planned treatment (Hong et al., 
2005; Thilmann et al., 2006; Dawson and Jaffray, 2007). 

The risk of a systematic error is low but the clinical consequences can 
be unpredictable if the error is not corrected before or during treatment. 
Decrease of Dmin in phase III corresponds to target volumes that will receive the 
entire dose of 70Gy/35 fractions increases the number of cold spots associated 
with risk of under-dosage in primary tumor volume. The association between a 
Dmin decreased in absolute and relative decrease of Dmin by applying “simulated 
error”, the presence of “cold spots” in a radio-resistant hypoxic zone may be a 
factor associated with the presence of a residual tumor at the end of treatment. 
In this case IMRT technique is associated with a higher risk of under-dosage for 
target volume of primary tumors of the nasopharynx than 3D-CRT and VMAT 
techniques. By applying the biaxial isocenter shift laterocervical nodal levels 
(PTV-N66) shows a lower risk of under-dosage than (PTV-T) and the dose 
effect to supraclavicular nodal (PTV-N50) level is insignificant (Fig. 2). The 
presence of clinically detectable lymph nodes with a good response to therapy 
or a significant patient weight loss resulting in neck circumference reduction 
associated with isocentric shift can bring the skin in the build-up dose area, 
especially for the case of IMRT technique with more tangential fields (Iancu 
and Iancu, 2004; Kaur et al., 2016; Liu et al., 2016). 

 
4. Conclusions 

 
A systematic error of + 3 mm biaxial shift applied to isocenter has no 

severe consequences on the quality of treatment of nasopharyngeal primary 
tumor but may result in under-dosage in laterocervical nodal volumes. Adding a 
random error to the induced systematic error can amplify or reduce the 
dosimetric effects. In the case of exceeding the value of the total error beyond 
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the distance limit that manifests intense dose gradient for IMRT and VMAT 
methods there is a major possibility to irradiation with major dosimetric 
consequences for the target volumes and normal tissue. Immobilization systems 
(thermoplastic masks), IG systems and an accurate calibration of the treatment   
table and positioning lasers ensure the quality of treatment. 
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EFECTUL DOZIMETRIC AL ERORILOR SISTEMATICE DE POZIȚIONARE 
 PRIN INDUCEREA ARTIFICIALĂ A UNEI DEPLASĂRI BIAXIALE 

 DE 3 mm A MESEI DE TRATAMENT ÎN RADIOTERAPIA EXTERNĂ A 
CANCERULUI DE RINOFARINGE LOCAL AVANSAT 

 
(Rezumat) 

 
Cancerele sferei ORL sunt patologii în care radioterapia este de multe ori 

metoda principală de tratament, în special în cazurile avansate, depășite chirurgical. 
Analizăm efectul dozimetric a unei deplasări biaxile, de 3 mm, asupra izocentrului, 
aplicând un shift pe axele x și y de + 3 mm și evaluând dozele la organele de risc și în 
volumele țintă PTV-T (volumul țintă al tumorii primare), care a primit o doză de 70Gy 
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în 35 fracțiuni (faza I), PTV- N66 (faza II) și PTV-N50 (faza III) pentru ariile 
gaglionare laterocervicale și supraclaviculare iradiate cu 66, respectiv 50Gy în 33 și 25 
fracțiuni, prin tehnica boost-ului secvențial. Evaluarea parametrilor dozimetrici Dmax, 
Dmean și Dmin s-a făcut atât pentru volumele țintă cât și pentru OAR (organele de risc) 
înainte și după aplicarea shiftului pentru planurile 3D-CRT (3D conformațional) și pe 
planurile alternative IMRT (radioterapie cu intensitate modulată) și VMAT 
(radioterapie rotațională cu intensitate modulată). Efectul asupra volumelor țintă ca 
distribuție a dozei a fost semnificativ doar în fazele II și III. În cazul OAR, prin tehnica 
3D, în urma shiftului s-a depășit doza maximă recomandată de ghidul dozimetric 
QUANTEC. 
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